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Abstract

Diverse mechanisms for DNA-protein recognition have been elucidated in numerous atomic complex structures from
various protein families. These structural data provide an invaluable knowledge base not only for understanding DNA-
protein interactions, but also for developing specialized methods that predict the DNA-binding function from protein
structure. While such methods are useful, a major limitation is that they require an experimental structure of the target as
input. To overcome this obstacle, we develop a threading-based method, DNA-Binding-Domain-Threader (DBD-Threader),
for the prediction of DNA-binding domains and associated DNA-binding protein residues. Our method, which uses a
template library composed of DNA-protein complex structures, requires only the target protein’s sequence. In our approach,
fold similarity and DNA-binding propensity are employed as two functional discriminating properties. In benchmark tests on
179 DNA-binding and 3,797 non-DNA-binding proteins, using templates whose sequence identity is less than 30% to the
target, DBD-Threader achieves a sensitivity/precision of 56%/86%. This performance is considerably better than the
standard sequence comparison method PSI-BLAST and is comparable to DBD-Hunter, which requires an experimental
structure as input. Moreover, for over 70% of predicted DNA-binding domains, the backbone Root Mean Square Deviations
(RMSDs) of the top-ranked structural models are within 6.5 Å of their experimental structures, with their associated DNA-
binding sites identified at satisfactory accuracy. Additionally, DBD-Threader correctly assigned the SCOP superfamily for
most predicted domains. To demonstrate that DBD-Threader is useful for automatic function annotation on a large-scale,
DBD-Threader was applied to 18,631 protein sequences from the human genome; 1,654 proteins are predicted to have
DNA-binding function. Comparison with existing Gene Ontology (GO) annotations suggests that ,30% of our predictions
are new. Finally, we present some interesting predictions in detail. In particular, it is estimated that ,20% of classic zinc
finger domains play a functional role not related to direct DNA-binding.
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Introduction

The past decade has witnessed tremendous progress in genome

sequencing [1–5]. According to the Genomes On Line Database,

the complete sequenced genomes of almost 1,000 cellular organisms

have been released, and about 5,000 active genome sequencing

projects are on the way [6]. The unprecedented amount of genetic

information has provided hundreds of thousands of protein

sequences [7]. This poses a challenging problem to elucidate their

functions, as experimental characterization of all newly sequenced

proteins is obviously impractical. Fortunately, many of them are

homologous to proteins that have been experimentally studied.

Consequently, it would be highly desirable to develop computa-

tional approaches that automatically annotate a new protein

sequence through its functionally characterized homologs [8–10].

The key component of such approaches is the ability to detect

homologous relationships between un-characterized and character-

ized proteins. For this purpose, many sequence and structural

similarity comparison methods have been developed [11–15].

While sequence-based methods are powerful and widely adopted

for function inference [16–18], structure-based methods are more

sensitive in detecting homologs with low or no sequence similarity

[19–21]. However, significant sequence or structural similarity does

not necessarily lead to identical function, since the functional roles of

related proteins can diverge during the course of evolution [22,23].

To address this problem, it is often necessary to examine the

conservation of functionally discriminating residues when predicting

enzymatic functions [17], or to evaluate the interaction energy when

predicting protein-protein [24] or protein-DNA interactions [19].

DNA-binding function is a key characteristic of many proteins

involved in various essential biological activities; these include

DNA transcription, replication, packaging, repair and rearrange-

ment. These DNA-binding proteins have a diversified classifica-

tion according to their structures and the way they interact with

DNA [25,26]. Due to the importance of DNA-binding proteins, a

few dedicated computational approaches have recently been

proposed for the prediction of DNA-binding function from protein

structure [19,27–31]. These methods can be classified into two

groups: structure template-based and template-free, depending on

how (or if) they use the information from the known structures of

DNA-binding proteins. Template-based methods utilize a struc-

tural comparison protocol to detect significant structural similarity

between the query and a template known to bind DNA at either

the domain or the structural motif level and use a statistical or
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electrostatic potential to assess the DNA-binding preference of the

target sequence [19,29]. The latter assessment reduces the number

of false positives, which is important for the success of these

methods. Template-free methods do not perform direct structural

comparison, but typically follow a machine-learning framework

and use features such as sequence composition and biophysical

properties of surface patches [27,28,30,31]. Although they can

potentially detect a novel DNA-binding protein fold, template-free

methods generally have lower accuracy than template-based

methods, which perform well on large-scale datasets and have

been applied to structural genomics targets [19].

In addition to DNA-binding function, it is also of interest to

predict the amino acids that directly participate in DNA-binding.

This is often straightforward for a template-based approach, as one

can infer the binding residues directly from the identified template

[19]. By comparison, in a template-free approach, one needs to

design a new prediction protocol [32–36]. Recently, a new

approach has been developed to predict DNA-binding residues

through DNA-protein docking [37]. This approach, which takes the

advantage of the non-specific DNA-binding ability of DNA-binding

proteins, provides a coarse model of the DNA-protein complex in

addition to the prediction of DNA-binding sites.

Although structural information is helpful for predicting DNA-

binding function, it can also limit the scope of application because

less than 1% of all proteins have an experimentally determined

structure [38]. To overcome this limitation, we introduce a

threading-based method, DBD-Threader, for the prediction of

DNA-binding domains and associated functional sites. Threading-

based approaches, which require only sequence as query input,

have been successfully applied to the prediction of protein-protein

interactions [24,39] and protein-ligand interactions [40]. Below,

we first describe the framework of our approach, and then

compare its performance with three established methods,

including the standard sequence alignment tool PSI-BLAST

[11], the threading method PROSPECTOR [41], and the

experimental structure-based DNA-binding prediction method

DBD-Hunter [19]. Finally, we present the application of DBD-

Threader to the human genome, for which DBD-Threader

detected ,7,000 DNA-binding domains in 59 SCOP superfam-

ilies. We also predict that ,20% of classic zinc finger domains play

a functional role not related to direct DNA-binding.

Results

We briefly review the general strategy of DBD-Threader (see

Methods for details). Fold similarity and DNA-binding propensity

are two properties employed for inferring function. Fold similarity

is evaluated by a threading procedure, and the DNA-binding

propensity is calculated using a statistical DNA-protein pair

potential. Given the sequence of a target protein, the method first

threads the sequence against a template library composed of

DNA-binding protein domains whose structures have been

experimentally determined in complex with DNA. Significant

template hits obtained through threading, if any, are further

evaluated by the DNA-protein interaction energy, calculated using

the target/template alignment and the corresponding DNA

structure complexed with the template protein. If a target protein

has at least one significant template that satisfies both the specified

Z-score and energy threshold conditions, the protein is predicted

as DNA-binding and as non-DNA-binding otherwise. The

threshold conditions are optimized through benchmark tests. For

predicted DNA-binding proteins, DBD-Threader further assigns

the SCOP superfamily to identified DNA-binding domains,

provides structural models, and infers the DNA-binding protein

residues according to the top-ranked template. A web-server

implementation of the method is available at http://cssb.biology.

gatech.edu/skolnick/webservice/DBD-Threader/.

Functional Discriminating properties
DBD-Threader uses fold similarity evaluated by the threading Z-

score, and DNA-binding propensity, evaluated by DNA-protein

interaction energy, as two properties to discriminate DNA-binding

proteins from non-DNA-binding proteins. The effectiveness of these

two properties are demonstrated through an analysis of 179 DNA-

binding proteins (DB179) and 3797 non-DNA-binding proteins

(NB3797); two non-redundant datasets collected previously [19].

The sequences of these ,4,000 proteins were used as input. For

each target, we excluded from the library any template whose

sequence is more than 30% identical to the target, since we are

mostly interested in detecting homologs at low sequence identity.

A significant threading Z-score for a pair of target/template

proteins typically suggests a high level of structural similarity.

Since two proteins with similar structures more likely share the

same function than those in different structures, the threading Z-

score can serve as a good indicator not only for structure similarity,

but also for function similarity. As shown in Figure 1A, 70% (126)

of the proteins in DB179 hit at least one template from the DNA-

binding domain library with a significant Z-score.6; 25% (44) hit

with a high Z-score.20. By contrast, only 3.9% (149) proteins of

NB3797 hit at least one template with a Z-score.6, and only two

targets from NB3797 hit a template with a high Z-score.20.

These results suggest that one can utilize threading to filter out the

vast majority of non-DNA-binding proteins, while keeping many

homologs with DNA-binding function. However, since the

numbers of proteins with a significant hit are about the same in

the DNA-binding and the non-DNA-binding protein sets, about

half of the predictions would be incorrect if one chooses a Z-score

of 6 as the threshold to determine the DNA-binding function. One

can raise the threshold to a high Z-score of 20, which would

greatly improve the precision of the predictions to 96%. But, it

would also reduce dramatically the sensitivity (coverage) of the

predictions to only 25%. Thus, use of threading alone has a limited

accuracy when applied for functional inference.

To further improve the precision without seriously compromis-

ing the sensitivity of the predictions, we introduce a DNA-protein

statistical pair potential to assess DNA-binding propensity [19]. It

Author Summary

DNA-binding proteins represent only a small fraction of
proteins encoded in genomes, yet they play a critical role
in a variety of biological activities. Identifying these
proteins and understanding how they function are
important issues. The structures of solved DNA protein
complexes of different protein families provide an
invaluable knowledge base not only for understanding
DNA-protein interactions, but also for developing methods
that predict whether or not a protein binds DNA. While
such methods are useful, they require an experimental
structure as input. To overcome this obstacle, we have
developed a threading-based method for the prediction of
DNA-binding domains and associated DNA-binding pro-
tein residues from protein sequence. The method has
higher accuracy in large scale benchmarking than methods
based on sequence similarity alone. Application to the
human proteome identified potential targets of not only
previously unknown DNA-binding proteins, but also of
biologically interesting ones that are related to, yet
evolved from, DNA-binding proteins.

Prediction of DNA-Binding Proteins
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has been shown that this term can be used to differentiate DNA-

binding protein residues from non-DNA-binding residues, inde-

pendent on the specific DNA substrates involved [19,37]. If a pair

of target/template proteins has similar structure, then the target

protein might favorably interact with the template DNA in a

similar way as the template protein. This assumption is generally

valid, as shown in the distributions of the DNA-protein interaction

energy of targets with at least one significant (Z-score.6) template

(Figure 1B). For each target, the lowest energy is shown if more

than one significant hit is identified. 94 of 126 targets from DB179

have attractive DNA-protein interaction energy values ,25,

whereas only 28 of 149 targets from NB3797 have an energy value

,25. The analysis suggests that a functional relationship between

remote homologs can be established at quite high precision

through a combination of threading and interaction energy

calculations, which is the strategy adopted by DBD-Threader.

DNA-binding function prediction
To benchmark the performance of our approach, DBD-

Threader is compared with three methods: PSI-BLAST [11],

PROSPECTOR [41], and DBD-Hunter [19]. Two sequence

libraries from NCBI and from UniProt were used to derive the

position specific sequence profile for PSI-BLAST, respectively.

Details of the assessment procedures are given in Methods.

Figure 2A shows the precision-recall (PR) and Figure 2B shows

the Receiver Operator Characteristic (ROC) curves for benchmark

tests on DB179 and NB3797. DBD-Threader generally performs

better than PROSPECTOR and PSI-BLAST, especially at a

precision higher than 0.75 and at False Positive Rate (FPR) lower

than 0.01, the regime relevant to practical applications. Corre-

spondingly, the sensitivity obtained by DBD-Threader can be

higher than 0.55 within this regime. If one considers only fold

similarity suggested by the threading Z-score or sequence similarity

measured by the PSI-BLAST E-value, one obtains an inferior

precision/FPR at the same level of sensitivity. For example, at a

sensitivity value of 0.55, the precision/FPR for DBD-Threader,

PROSPECTOR, and PSI-BLAST (NCBI), and PSI-BLAST

(UniProt) is 0.85/0.004, 0.69/0.012, 0.24/0.085, and 0.24/0.081,

respectively. Therefore, the results suggest that the quality of

predictions by DBD-Threader is significantly improved when both

Figure 2. Comparison of methods for predicting DNA-binding function. Benchmark tests were performed on DB179/NB3797 sets. (A) PR
(Precision vs. sensitivity) curves. (B) ROC (sensitivity vs. FPR) curves. The curves of DBD-Threader were obtained by varying the energy threshold while
requiring a minimum Z-score of 6. For PROSPECTOR and PSI-BLAST, the thresholds varied to calculate the ROC and PR curves are the threading Z-
score of PROSPECTOR and the E-value of PSI-BLAST, respectively. If a target hits a template with a Z-score or E-value above the specified threshold,
the target is predicted as DNA-binding and non-binding otherwise. The results from DBD-Hunter were obtained with optimized parameters [19] and
the same template library as used by DBD-Threader.
doi:10.1371/journal.pcbi.1000567.g002

Figure 1. Properties selected for discriminating DNA-binding proteins from non-DNA-binding proteins. (A) Fold similarity evaluated by
the threading Z-score. For each target sequence from the DB179 and NB3797 sets, the highest Z-score obtained in threading was used to create the
histograms. (B) DNA-binding propensity assessed by DNA-protein interaction energy. Only significant template hits with Z-score.6 were considered.
For a target with multiple hits, the one with the lowest interfacial energy was chosen to create the histogram distributions.
doi:10.1371/journal.pcbi.1000567.g001

Prediction of DNA-Binding Proteins
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threading Z-score and protein-DNA interaction propensity are

taken into account. We also note that threading itself (PROSPEC-

TOR) typically performs better than PSI-BLAST.

The comprehensive performance of these methods can be assessed

by the Matthews Correlation Coefficient (MCC) [42]. A perfect

prediction at 100% accuracy yields a MCC of one, whereas a random

prediction gives a MCC of zero. The best MCCs of these four methods

are provided in Table 1. The highest MCC of DBD-Threader is 0.680,

corresponding to a sensitivity of 0.56 and a precision of 0.86, whereas

the best MCCs of PROSPECTOR, PSI-BLAST (NCBI), and PSI-

BLAST (UniProt) are 0.609, 0.540, and 0.553, both as shown in

Table 1 at lower sensitivity and precision than DBD-Threader.

Moreover, the best performance of DBD-Threader is only slightly

lower than that (MCC 0.681) of DBD-Hunter, which requires the

structure of the target as input. Note that the previous results of DBD-

Hunter were obtained on a smaller template library [19]. The results

reported here are based on the updated template library employed by

all methods. Direct structural comparison allows DBD-Hunter to

detect homology between a pair of template/target proteins with no

sequence similarity, resulting in the highest sensitivity of 0.61 among all

four methods at the same precision of 0.79. Nevertheless, the

performance of DBD-Threader is comparable to that of DBD-Hunter

in terms of its MCC. The optimal thresholds corresponding to the best

performance of DBD-Threader were adopted in the application to the

human genome below.

The contributions by threading and by energy to the optimal

performance of DBD-Threader are further dissected through an

analysis of DNA-binding and non-DNA-binding proteins that share

common structural folds. Here, we use the Structural Classification of

Proteins (SCOP) to classify structural folds [43]. Table 2 shows the

numbers of proteins (and their relevant domains) that belong to the

same SCOP folds across two benchmark sets DB179/NB3797. In

Table 2. Statistics of 24 SCOP folds common to both DNA-binding and non-DNA-binding proteins in the benchmark sets.

All Threading Final

SCOP ID Ndom Npro Ndom Npro Ndom Npro SCOP Fold Description

46688 49/11 39/8 41/3 36/2 37/0 32/0 DNA/RNA-binding 3-helical bundle

52979 14/4 14/3 6/0 6/0 5/0 5/0 Restriction endonuclease-like

49379 7/26 7/23 1/0 1/0 1/0 1/0 Diphtheria toxin/TFs/cytochrome f

47768 7/1 6/1 6/0 5/0 4/0 3/0 SAM domain-like

47458 5/1 5/1 5/0 5/0 5/0 5/0 HLH-like

57943 5/44 5/44 5/15 5/15 5/3 5/3 Parallel coiled-coil

53334 4/19 4/19 4/9 4/9 1/1 1/1 SAM-dependent methyltransferases

53066 4/34 4/20 1/0 1/0 0/0 0/0 Ribonuclease H-like

54861 3/98 3/95 0/3 0/3 0/0 0/0 Ferredoxin-like

55603 6/1 3/1 6/0 3/0 1/0 1/0 Homing endonuclease-like

100938 2/1 2/1 2/0 2/0 2/0 2/0 SPOC domain-like

47953 4/10 2/6 4/8 2/4 4/4 2/2 Cyclin-like

56218 2/2 2/2 2/2 2/2 1/0 1/0 DNase I-like

57715 2/11 2/5 0/0 0/0 0/0 0/0 Glucocorticoid receptor-like

46954 2/2 2/1 2/0 2/0 0/0 0/0 Putative DNA-binding domain

81302 1/8 1/8 0/1 0/1 0/0 0/0 Nucleotidyltransferase

55944 2/13 1/13 0/4 0/4 0/2 0/2 TBP-like

55810 1/12 1/11 0/12 0/11 0/0 0/0 Nudix

50485 1/2 1/2 1/0 1/0 0/0 0/0 FMT C-term domain-like

46556 1/10 1/10 0/0 0/0 0/0 0/0 Long a-hairpin

53755 1/6 1/6 0/3 0/3 0/0 0/0 UDP-Glycosyltransferase/glycogen phosphorylase

51350 1/218 1/216 0/4 0/4 0/0 0/0 TIM a/b-barrel

50352 1/30 1/23 0/0 0/0 0/0 0/0 b-Trefoil

52539 2/82 1/80 0/0 0/0 0/0 0/0 P-loop containing nucleoside triphosphate hydrolases

Total 127/646 109/599 86/64 75/58 66/10 58/8

Ndom and Npro denote the numbers of domains and proteins from DB179/NB3797, respectively. The statistics were collected for all targets, targets detected by threading
(Z-score.6), and the final positives after applying the energy filter. These three sets of numbers are indicated by All, Threading, and Final, respectively.
doi:10.1371/journal.pcbi.1000567.t002

Table 1. Comparison of methods for predicting DNA-binding
functions on DB179 and NB3797.

Method Max. MCC Sensitivity FPR Precision

DBD-Threader 0.680 0.56 0.004 0.86

DBD-Hunter 0.681 0.61 0.008 0.79

PROSPECTOR 0.609 0.53 0.009 0.74

PSI-BLAST (NCBI) 0.540 0.49 0.013 0.64

PSI-BLAST (UniProt) 0.553 0.43 0.007 0.75

doi:10.1371/journal.pcbi.1000567.t001
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total, there are 109/599 proteins that contain 127/646 domains from

24 common SCOP folds. The vast majority of non-DNA-binding

proteins were filtered out after the threading procedure, resulting in a

90% reduction in non-DNA-binding proteins but only a 31%

reduction in DNA-binding proteins to 75/58 DB/NB proteins. After

applying the optimal energy criteria, the number of DNA-binding

proteins is reduced by 23% to 58, whereas the number of non-DNA-

binding dramatically decreases again by 86% to 8. We note that in

some sparsely populated (number of DB targets #4) folds, successive

filtering by threading and energy left no true positive from the DB set.

This is mainly due to the absence of a suitable template under the

specified sequence identity cutoff of 30%. By ignoring these folds, one

still obtains about 75% and 80% reduction rates on non-DNA-binding

proteins through threading and energy filtering, respectively, while the

majority of DNA-binding proteins are kept. Overall, the analysis shows

that both threading and energy calculations significantly contribute to

the ability to distinguish the DNA-binding function among proteins

with similar folds.

There are 91 non-DNA-binding proteins with at least one

significant template hit (threading Z-score.6), but they are from

other SCOP folds that lack any known DNA-binding protein.

These non-DNA-binding proteins may contain structural frag-

ments similar to their significant template hits or may be falsely

identified by threading. By applying the energy criteria, 82 of these

91 proteins were correctly filtered out as non-DNA-binding

proteins. The energy calculations, therefore, serve to reduce the

number of potential false positives generated by threading.

The contribution of energy filtering can be illustrated through two

examples from the NB3797. The top ranked template hits by these

two targets are significant with Z-scores over 20, but these templates

did not satisfy the energy criteria because of their high repulsive

DNA-protein interaction energies. Both proteins are classified as non-

DNA-binding. The first example is an inositol polyphosphate 5-

phosphatase (PDB 1i9yA), which hits a DNA repair protein APE1

(1dewB). They are evolutionarily related and belong to the same

SCOP superfamily. However, they have very different selectivity for

substrate, as the inositol polyphosphate 5-phosphatase is not known

to bind DNA. The second example is l lysozyme (1am7A), which hit

an endonuclease (2fldA) with a high Z-score. This seems to be a false

positive by threading, since the target/template pair shares no

apparent structural similarity and are not related. Nevertheless, the

template did not pass energy screening.

Overall, by applying energy filtration, the number of true/false

positives decreases from 131/149 (after threading) to 100/17, the

numbers including results from all targets with official SCOP

classification, as well as those unclassified. Thus, the filtration by

energy improves the precision from 47% to 86% without

dramatically compromising the sensitivity.

Structural model and functional site prediction
In addition to function prediction, DBD-Threader also predicts

structural models of DNA-binding domains from templates that

provide the structural basis for function prediction. Furthermore, one

may infer the functional sites directly from the template, once the

functional and structural similarity between the template and the target

is established. To demonstrate this point, we implemented a simple

procedure in DBD-Threader that predicts DNA-binding protein

residues from the top ranked template by those residues in the target

aligned to DNA-binding residues in the template. In benchmark tests

on DB179, this procedure was conducted on 124 domains from 100

DNA-binding proteins predicted as positives by DBD-Threader at the

optimal thresholds. The value of the MCC, which measures the degree

of overlap between predicted binding residues and the true binding

residues observed in the native (experimental) complex structures, is

used to assess the accuracy of functional site prediction. As shown in

Figure 3A, DBD-Threader performs well on both structural and

functional site prediction. The mean Template Modeling score (TM-

score) of the top-ranked structural models of the 124 DNA-binding

domains with respect to their native structures is 0.65, and 92% of these

domains have a TM-score higher than 0.4, which indicates significant

structural similarity [15]. Similarly, 70% of these domain models have

a backbone Ca RMSD of less than 6.5 Å from their native structures.

Accordingly, the mean MCC of binding site predictions is generally

satisfactory, being about 0.52 for all predicted DNA-binding domains

and 0.54 for domains with a TM-score higher than 0.4. As one may

expect, the accuracy of binding site prediction is correlated with model

quality. High quality models with a TM-score higher than 0.6

generally provide a high accuracy binding site prediction, yielding a

mean MCC of 0.57, whereas low quality models with a TM-score

lower than 0.4 provide inferior binding site predictions with MCCs

lower than 0.4.

We further analyzed the performance according to the SCOP

superfamily association of these predicted domains, as shown in

Table 3. The analysis considers 84 predicted DNA-binding

Figure 3. Predictions of structural models and DNA-binding sites. A total of 100 DNA-binding proteins predicted by DBD-Threader were
examined individually. (A) Scatter plot of TM-score versus MCC. Each point represents one of 124 predicted DNA-binding domains from the 100 DNA-
binding proteins. (B) Box plots overlapped with data points are shown for five performance metrics on DNA-binding protein residue predictions. Each
point represents one protein including all predicted domains. The lower, middle and upper quartiles of each box are the 25th, 50th, and 75th percentile;
whiskers extend to a distance of up to 1.5 times the interquartile range. Data points and means are represented by circles and squares, respectively.
doi:10.1371/journal.pcbi.1000567.g003
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proteins that have an official SCOP assignment, which includes

100 domains detected by DBD-Threader and an additional 10

domains missed by DBD-Threader (see SCOP superfamily

prediction below). According to their SCOP classifications, the

100 detected domains are from 31 SCOP superfamilies. The

performance of DBD-Threader is generally good across various

SCOP superfamilies. 24 of 31 superfamilies have a mean TM-

score/MCC higher than 0.4. It appears that members of the

winged helix superfamily have rather diverse DNA-binding sites.

This is indicated by the mean MCC of 0.38, despite the high

quality of models that are obtained (mean TM-score of 0.65).

The performance measures, sensitivity, specificity, accuracy and

precision, were also calculated for each of 100 proteins including all

DNA-binding domains. As shown in Figure 3B, for 61% of predicted

Table 3. Benchmark results of SCOP superfamily predictions by DBD-Threader.

SCOP ID True C/U/M/I ,TM-score. ,MCC. SCOP Superfamily Description

46689 22 16/2/2/2 0.69 0.57 Homeodomain-like

46785 14 11/2/1/0 0.65 0.38 Winged helix DBD

47113 6 6/0/0/0 0.65 0.56 Histone-fold

57959 5 2/2/0/1 0.55 0.75 Leucine zipper

47459 5 5/0/0/0 0.79 0.78 HLH DBD

47413 5 4/0/0/1 0.51 0.56 l repressor-like DBD

56672 5 5/0/0/0 0.71 0.36 DNA/RNA polymerases

52980 5 3/2/0/0 0.53 0.25 Restriction endonuclease-like

47954 4 4/0/0/0 0.86 0.56 Cyclin-like

46894 3 2/0/0/1 0.69 0.55 C-term Domain of bipartite response regulators

56349 3 1/2/0/0 0.60 0.50 DNA breaking-rejoining enzymes

55455 2 2/0/0/0 0.67 0.79 SRF-like

47095 2 2/0/0/0 0.74 0.55 HMG-box

52141 2 1/1/0/0 0.56 0.36 Uracil-DNA glycosylase-like

100939 2 2/0/0/0 0.70 0.41 SPOC domain-like

57701 2 0/2/0/0 0.43 0.59 Zn2/Cys6 DBD

55608 2 0/1/1/0 0.61 0.49 Homing endonucleases

57667 2 2/0/0/0 0.68 0.59 C2H2 and C2HC zinc fingers

46596 1 0/0/1/0 2 2 DNA topoisomerase I, dispensable insert domain

56219 1 1/0/0/0 0.69 0.45 DNase I-like

49417 1 1/0/0/0 0.71 0.61 p53-like transcription factors

81624 1 1/0/0/0 0.78 0.75 N-term domain of MutM-like

46946 1 1/0/0/0 0.72 0.54 S13-like H2TH domain

56741 1 0/0/1/0 2 2 Eukaryotic DNA topoisomerase I, N-term DBD

48150 1 1/0/0/0 0.79 0.85 DNA-glycosylase

81585 1 0/1/0/0 0.82 0.82 DNA polymerase b-like, second domain

47802 1 0/0/0/1 0.48 0.39 DNA polymerase b, N-term domain-like

48295 1 0/0/0/1 0.27 0.17 TrpR-like

57716 1 0/0/1/0 2 2 Glucocorticoid receptor-like (DBD)

81301 1 0/0/1/0 2 2 Nucleotidyltransferase

53335 1 0/1/0/0 0.83 0.61 SAM-dependent methyltransferases

100879 1 0/1/0/0 0.80 0.79 Lesion bypass DNA polymerase, little finger domain

48334 1 0/1/0/0 0.82 0.68 DNA repair protein MutS, domain III

47823 1 0/1/0/0 0.68 0.52 l integrase-like, N-term domain

47781 1 0/1/0/0 0.30 0.27 RuvA domain 2-like

55811 1 0/0/1/0 2 2 Nudix

53098 1 0/0/1/0 2 2 Ribonuclease H-like

Total 110 73/20/10/7

The results are based on 110 DNA-binding domains from 84 predicted DNA-binding proteins that have official (True) SCOP assignments. The numbers of SCOP domain
predictions are shown for four groups: Consistent (C) Un-annotated (U), Inconsistent (I), and Missed (M). Consistent predictions have the same SCOP superfamily
assignments as the true assignments. If a DNA-binding domain is predicted based on a template without an official SCOP assignment, then the SCOP prediction is
skipped and the domain belongs to the Un-annotated group. A target protein may contain multiple DNA-binding domains, and any domain not detected by DBD-
Threader is a Missed domain. The remaining SCOP predictions, in which SCOP predictions are different from the official assignments, are considered Inconsistent. , .

denotes mean. TM-scores and MCCs of DNA-binding residue predictions were calculated for all predicted domains per SCOP superfamily.
doi:10.1371/journal.pcbi.1000567.t003
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DNA-binding proteins, good functional site predictions were obtained

at a MCC higher than 0.50. On average, a MCC of 0.53, a sensitivity

of 0.60, a specificity of 0.93, an accuracy of 0.86 and a precision of 0.64

were obtained. The results imply that DNA binding residues were

identified with satisfactory accuracy in most cases.

SCOP superfamily prediction
The homologous relationship between the target/template pairs

identified by DBD-Threader was further validated using their SCOP

superfamily classifications [43]. Here, we test the idea of inferring the

SCOP superfamily identity of a predicted DNA-binding domain

from its templates. Among 100 predicted DNA-binding proteins, we

only consider those whose SCOP assignments have been officially

assigned. The consideration leads to 84 proteins composed of 110

true domain assignments, which are then compared with the

predictions by DBD-Threader. The predictions can be classified

into four groups, as shown in Table 3. The first group is 73 SCOP

superfamily predictions that are consistent (C) with the official SCOP

assignments. These correctly predicted domains are from 21 different

SCOP superfamilies, including two of the most populated superfam-

ilies, homeodomain-like and winged helix domains, with 16 and 11

correct predictions, respectively. These 27 domains consist of diverse

members from 16 different SCOP families. The second group of

predictions is 20 DNA-binding domains correctly identified as DNA-

binding, but their SCOP superfamily classifications were un-

annotated (U) because the corresponding templates have no official

SCOP assignment. In 16/20 un-annotated cases, significant

structural similarities between target/template pairs were found at

a TM-score.0.5, implying that most of these pairs likely belong to

the same superfamily. The 16 cases that are un-annotated combined

with the 73 consistent SCOP predictions lead to 89 cases, or 81% of

110 domains, that may be considered correct. The third group is

comprised of ten missed (M) DNA-binding domains, which are from

proteins with multiple DNA-binding domains. In these cases, DNA-

binding function can be successfully predicted by identifying some but

not all of its DNA-binding domains. The fourth group of predictions

are from the seven cases where the SCOP superfamily predictions are

inconsistent (I) with the true SCOP assignment. Inspection of these

predictions suggests potential functional homology in 5/7 cases. Two

are presented in detail below.

In the first example, the target protein is the DNA-binding

domain of PhoB, a transcription activator from E. coli [44].

According to SCOP, this domain belongs to the superfamily

named C-terminal effector domain of the bipartite response

regulators. DBD-Threader predicts that the domain belongs to the

superfamily of winged helix DNA-binding domains based on its

top ranked template, the Za domain of an enzyme ADAR1

(Adenosine Deaminase Acting on RNA) from human [45].

Although ADAR1 is best known as an RNA binding protein, it

is also known to bind Z-DNA with its Za domain, as shown in

multiple crystal structures of ADAR1/DNA complexes [45,46]. In

addition, the DNA-binding ability of Za has been used to detect

stable Z-DNA segments in the human genome [47], and has been

linked to a new functional role of ADAR1 as a sensor of

immunoreactive DNA [48]. Despite the difference in SCOP

superfamily classification, the target and the template share a

similar structural motif, with a high TM-score of 0.69, as shown in

Figure 4A. In fact, both structures are members of the same

superfamily of winged helix domains according to CATH, a

hierarchical classification of protein domain structures [49]. In

addition, both DNA-binding domains have similar DNA-binding

sites, which include six residues from a a helix and a b hairpin

(Figure 4A). The significant structural similarity and the overlap of

the DNA-binding sites suggest that these two domains might have

remote homology, despite the lack of sequence similarity. Thus, we

have an interesting case of the PhoB domain being correctly

assigned as DNA binding through the matching to an RNA

binding protein that is also known to bind DNA.

In the second example, the target is the N-terminal domain

from a eukaryotic DNA polymerase, Pol b [50]. The target hits a

Figure 4. Two examples from SCOP superfamily predictions inconsistent with the official assignment suggest remote homology
between the target and the corresponding template. (A and B) The structures of proteins are illustrated in cartoon representations, and
colored in blue and red for the target and the template, respectively. DNA-binding and non-DNA-binding regions are shown in solid and transparent
modes, respectively. For each protein, the six-character SCOP domain access code (shown in parentheses) includes a four-digit PDB code (lower case),
a chain identifier (upper case), and a numeric domain identifier defined by SCOP. Molecular images were made with the program VMD [68].
doi:10.1371/journal.pcbi.1000567.g004
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significant template from an archaeal endonuclease XPF, whose

structure is composed of two heterogeneous domains [51]. As

shown in Figure 4B, the target domain from Pol b was aligned to

the N-terminal domain of XPF with significant structural

similarity, having a TM-score of 0.48, and considerable overlap

of DNA-binding residues, despite the fact that the two domains

have different superfamily classifications in SCOP. The structural

and functional site analysis suggests that the two domains may

have a remote relationship.

Application to the human genome
To demonstrate that DBD-Threader is a useful tool for

automatic function annotation, we applied DBD-Threader to

18,621 unique protein sequences from the human genome. The

method made positive predictions for 1,654 (8.9%) proteins (see

Methods for availability). Our predictions are compared to the

GO annotations for the human genome [52] in Figure 5.

According to the GO molecular function annotations, all human

proteins can be classified into four sets: DB21,744 proteins

annotated as DNA-binding, UB21,573 proteins not explicitly

annotated as DNA-binding but annotated with a molecular

function likely implicating DNA-binding, such as transcription

factor activity, NB210,616 proteins with at least one molecular

function annotation and not in either DB or UB, and UK24,688

proteins with unknown molecular function. While the vast

majority of entries in DB are classified based on electronic

annotations, we collected a small subset of DB, named DB EXP, in

which the DNA-binding function has been verified for each

member in direct experimental assay. This DB EXP set consists of

69 sequences. DBD-Threader detected at least one significant

structural template for 56 of them and correctly predicted 54 as

DNA-binding. Similarly, when applied to the DB set, DBD-

Threader found at least one significant template for 1,235

sequences and predicted 1,179 (95%) of them as DNA-binding

proteins. Notably, when applied to the UB set, DBD-Threader

predicted 325 DNA-binding proteins. Among these UB positives,

256 and 51 have transcription factor activity and RNA-binding

activity according to their GO annotations, respectively. These

proteins likely possess DNA-binding function as well. While 89%

of the positives are from either DB or UB, very few positives, 72

(0.68%), are from the NB set. This result is expected, since the

chance that a protein has both DNA-binding and an unrelated

molecular function is small. Despite the fact that 298 targets from

NB hit a significant structural template that binds DNA with Z-

score.6, 75% of them are filtered out by the interaction energy

criterion. These negatives likely possess a fold similar to a DNA-

binding domain, but they do not carry out the same function.

Furthermore, DBD-Threader predicts 78 DNA-binding proteins

among previously uncharacterized sequences. These predictions

provide potentially interesting targets for further experimental

validation.

A total of 6,896 DNA-binding domains from 59 SCOP

superfamilies were located by DBD-Threader in the sequences

of 1,654 positives. The top twenty most populated SCOP

superfamilies of predicted DNA-binding domains are listed in

Table 4. Notably, zinc-fingers appear in about 41% (674) of

predicted DNA-binding proteins, and this particular superfamily

dominates the domain predictions at 80% of the total (5,504). The

second and third most common SCOP superfamilies are

homeodomain-like and winged helix domains, which are found

in 263 and 143 sequences, respectively. Many DNA-binding

proteins, particularly zinc-fingers, contain two or more DNA-

binding domains. Moreover, it is not uncommon that a sequence

encodes DNA-binding domains from different SCOP superfam-

ilies. In our annotations, we found 175 such cases.

Our predictions are compared with Pfam predictions, which are

based on Hidden Markov Models (HMMs) [53] in Table 4. The

results of Pfam predictions were obtained from the UniProt

knowledge base. For an objective comparison, we consider Pfam

families defined for DNA-binding proteins from our template

library. The Pfam definitions of these template structures were

initially obtained from the PDB. These were then manually

curated to ensure that the definitions correspond to the DNA-

binding domains. This led to 179 Pfam families that likely include

all DNA-binding proteins with known atomic complex structures,

but not those with unknown structures or with only DNA-

unbound structural forms. Using the SCOP definitions of the

templates, we are able to assign these Pfam families to 69 SCOP

superfamilies. Overall, Pfam found 7,162 significant domain

matches in 1,591 proteins from the same sequence set scanned

by DBD-Threader. The numbers are consistent with the 6,896/

1,654 domains/proteins predicted independently by DBD-

Threader.

As shown in Table 4, the results of the top three most populated

SCOP superfamilies are comparable between these two methods.

About 80%/85%, 4.5%/4.3%, and 2.1%/1.4% of predicted

domains are zinc finger, homeodomain, and winged helix proteins

by DBD-Threader/Pfam, respectively. The zinc finger proteins

dominate both predictions, and over 95% of predicted zinc finger

proteins were positively hit by both methods. Despite the

similarity, however, about 26% of zinc finger domains detected

by Pfam are predicted as negatives by DBD-Threader. One

interesting question is whether these domains have evolved their

function from DNA-binding to have other roles not involving

DNA-binding. Although the vast majority of these proteins have

not been experimentally studied, we found a few potential

examples of such zinc finger domains with experimental evidence

from the literature (see Case Studies below). Moreover, we noticed

that DBD-Threader predictions are more diverse in terms of the

number of SCOP superfamilies detected (59 vs. 48) and are about

three times more sensitive than Pfam in assigning putative DNA

binding ability to functionally uncharacterized proteins (78

positive hits vs. 20).

Predictions of DBD-Threader are further compared with PSI-

BLAST results in Figure 6. For each target, we identified the

lowest PSI-BLAST E-value of all sequence alignments with all

templates. In Figure 6A, the distributions of the lowest PSI-

BLAST E-values are given for both positives and negatives

Figure 5. DNA-binding proteins in the human genome. DNA-
binding proteins predicted by DBD-Threader are compared to the GO
annotations. Pos and Neg denote positive and negative predictions by
DBD-Threader, respectively.
doi:10.1371/journal.pcbi.1000567.g005
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predicted by DBD-Threader. One can immediately recognize that

most positives share significant sequence similarity with a known

DNA-binding domain. About 79% (1,314) of positives hit a

significant template at a PSI-BLAST E-value,10220. In contrast

to positives, only 0.3% (53) of negatives fall into this significant E-

value regime. Using the GO annotations, we found that 78% of

the 1,314 positives belong to the DB set, while only 49% of the 53

predicted negatives belong to DB. On the other hand, the

overwhelmingly majority of negatives (16,642) are found within

the regime where the E-value is higher than 1023. However,

DBD-Threader managed to predict 136 positives in this regime,

despite low/no sequence similarity. Analysis of their GO

annotations found that 13% (18) of positives belong to DB, the

ratio is over four times 2.9% (476), the rate of negatives classified

as DB in the same E-value regime. The comparison suggests that

DBD-Threader considerably enriches the predictions of true

positives compared to PSI-BLAST.

Case studies
DBD-Threader can make a strong prediction without apparent

sequence similarity. This is illustrated through an application to

the origin recognition complex subunit 6 (Orc6), which is a

component of the heterohexameric origin recognition complex

(ORC). The main function of ORC is to initiate DNA replication,

which necessitates DNA-protein interactions [54]. It has been

shown experimentally that Orc6 of Drosophila melanogaster binds to

DNA [55]. Human Orc6 has a statistically significant sequence

similarity to Drosophila Orc6 (PSI-BLAST E-value = 10224),

though the global sequence identity is relatively low at 30% over

,240 AAs. It is not clear, however, whether human Orc6 has a

similar DNA binding function [55,56]. The sequence of human

Orc6 was assessed by DBD-Threader, which predicted two DNA-

binding domains in the N-terminal region (residues 1–202), based

on a significant hit to the transcription factor TFIIB at a Z-score of

26 and an energy value of 29.3. By contrast, neither PSI-BLAST

nor Pfam can detect a significant template from our library, which

is not surprising given that there is no apparent sequence similarity

between TFIIB and Orc6. Although the structure of Orc6 has not

been experimentally solved, our prediction agrees with a structural

model of Drosophila Orc6 that was recently proposed [57]. In

addition, point mutations of Ser72 and Lys76, two residues located

within a putative DNA-binding helix-turn-helix motif and

conserved between human and Drosophila, abolish the DNA-

binding ability of Drosophila Orc6 [55].

It is well-known that function inference based on sequence or

structural comparison, even at a statistically significant level of

similarity, can be misleading [8,20]. By applying the energy based

filter, DBD-Threader can reduce false positives generated from

structural or sequence similarity comparison. This is illustrated

through a second example, the barrier-to-autointegration factor-

like (BAF-L) protein, whose sequence is about 40% identical to

that of BAF, a known DNA-binding protein [58]. The

homologous relationship was detected by PSI-BLAST (E-

value,10246), Pfam (E-value,10248), and DBD-Threader (Z-

score = 35). The GO annotations of BAF-L include DNA-binding

function, probably inferred from BAL based on sequence

similarity. However, using the energy filter, DBD-Threader

predicts that BAF-L is not a DNA-binding protein due to its

repulsive DNA-protein interaction energy. The prediction is

supported by an experimental study which suggests that the

functional role of BAF-L is not DNA-binding [59]. Instead, it is

proposed to be a regulator of BAF through dimerization with BAF.

The prediction is also supported by the fact that most residues

involving DNA-binding of BAL are not conserved in BAF-L.

Table 4. Top 20 most populated DNA-binding domains detected in the human genome.

SCOP ID DBD-T Pfam Nc SCOP Superfamily Description

57667 5504/674 6071/688 4485/655 C2H2 and C2HC zinc fingers

46689 311/263 314/276 266/246 Homeodomain-like

46785 148/143 102/98 101/98 Winged helix DBD

57716 93/58 68/62 54/54 Glucocorticoid receptor-like DBD

47459 87/87 104/103 85/85 Helix-loop-helix DBD

47113 68/67 56/56 54/54 Histone-fold

47095 57/38 61/50 40/38 HMG-box

47413 53/50 21/21 19/19 l repressor-like DNA-binding domains

57959 49/49 45/45 44/44 Leucine zipper domain

47954 44/26 4/2 4/2 Cyclin-like

49417 42/41 42/42 39/39 p53-like transcription factors

56672 31/28 21/21 21/21 DNA/RNA polymerases

52540 23/22 21/19 19/19 P-loop containing nucleoside triphosphate hydrolases

56219 22/19 26/26 19/19 DNase I-like

46894 22/22 0/0 0/0 C-term domain of the bipartite response regulators

117018 17/17 3/3 3/3 ATP-dependent DNA ligase DBD

56091 17/17 3/3 3/3 DNA ligase/mRNA capping enzyme, catalytic domain

50249 16/16 3/3 3/3 Nucleic acid-binding proteins

53098 12/12 10/10 10/10 Ribonuclease H-like

81296 11/11 27/22 10/10 E set domains

The numbers of domains/proteins detected by DBD-Threader and by Pfam are given for each SCOP Superfamily. The results of Pfam were obtained from the UniProt
knowledge base and mapped to SCOP superfamilies (see text). Nc denotes the numbers of domain/proteins detected by both methods.
doi:10.1371/journal.pcbi.1000567.t004
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Particularly interesting are the classic (C2H2/C2HC type) zinc

finger domains found in 41% of predicted DNA-binding proteins.

The classic zinc finger domain is one of most abundant protein

domains encoded in the human genome. According to the domain

annotations in the UniProt knowledge base, these are 6,873

C2H2/C2HC zinc finger domain matches in 751 protein

sequences of the 18,621 sequences scanned by DBD-Threader.

The vast majority (92%) of these sequences contain multiple zinc

finger domains. An interesting question is what functions these

domains perform. If one assigns DNA-binding function according

to sequence similarity detected by PSI-BLAST or Pfam, all zinc

finger domains detected would be assigned as DNA-binding.

Although the classic zinc finger domains originally discovered are

DNA-binding domains of many transcription factors, recent

studies have demonstrated that they can play a functional role

through protein-protein interactions (see reviews, [60,61]). While

DNA-protein and protein-protein interactions are not necessarily

mutually exclusive, it is possible that some zinc finger domains

play a role involving only protein-protein interactions. About 91%

of zinc finger domains annotated in UniProt were detected during

threading, and 22% of these significant threading hits were

assessed as negatives according to the energy calculations by DBD-

Threader. Although there are inevitably false positives/negatives,

we speculate that most of these negatives have acquired a

functional role that does not involve DNA-binding but other

biological interactions, such as protein-protein interactions.

To further examine our hypothesis, we compiled from the

review in [60] a list of 18 zinc finger domains likely involved only

in protein-protein interactions, as shown in Table 5. These

domains, collected from six human sequences, are all experimen-

tally well characterized. Note that we excluded domains with

known DNA-binding function from these sequences. If the

predictions by DBD-Threader were random, one would expect

that a true negative is predicted at a success rate of 22%. Assuming

that all 18 domains we collected are true negatives, we further test

the null hypothesis that DBD-Threader predicts non-DNA-

binding zinc finger domains at a success rate of 22% or less.

Among the 18 domains, DBD-Threader predicts 4 positives and

14 negatives, which yields a significant p-value (7.661027) in a

one-tailed binomial test. Therefore, we rejected the null

hypothesis. The result suggests that the predictions by DBD-

Threader are statistically highly significant.

Lastly, we examine an intricate example from Table 5 in the

transcription factor OAZ (Olf1/EBF-associated zinc finger protein,

also known as ZNF423). This is a 1284 AA long sequence composed of

30 zinc-fingers distributed in several clusters (Figure 7). The homology

of OAZ to other well-characterized zinc finger proteins, such as Zif268

and TFIIIA, were readily established by both PSI-BLAST and DBD-

Threader. Significant hits with PSI-BLAST E-values,10220 and

threading Z-scores.15 cover virtually all zinc-finger repeats of OAZ.

However, evaluation of the DNA-protein interaction energy by DBD-

Threader suggests that only fingers 2 to 6 are DNA-binding, whereas

other fingers do not carry out this function due to their highly repulsive

energy values (typically E.10). The prediction is in agreement with

two independent experimental studies [62,63]. In the former study, the

protein was partitioned into six clusters, and the DNA-binding activity

of each was assessed with SELEX. Only the cluster containing fingersFigure 6. Comparison of DBD-Threader with PSI-BLAST on the
human genome. (A) For each target sequence from the human
genome, the lowest PSI-BLAST E-value among all target/template
sequence alignments is selected to create histograms for all positive
and negative DBD-Threader predictions, respectively. Breakdowns of (B)
positive and (C) negative DBD-Threader predictions according to GO
annotations.
doi:10.1371/journal.pcbi.1000567.g006

Table 5. DNA-binding assay by DBD-Threader on C2H2/C2HC
zinc finger domains involved in protein-protein interactions.

Protein ZF Domain DBDT Total (+/2)

FOG1 ZF1, 41 2,+ 1/1

IKZF4/Eos ZF5,6 2,2 0/2

GLI1 ZF1 2 0/1

ZNF423/OAZ ZF14–19 2,2,2,2,2,2 0/6

ZBT16/PLZF ZF1,2,8,9 2,2,+,+ 2/2

ZBT32/FAZF ZF1–3 +,2,2 1/2

Total 18 4/14

Proteins were taken from tables 2 and 3 of reference [60]. We excluded two
sequences from mouse, one (the ortholog of ZNF423/OAZ) from rat, and a long
sequence (MBP-1, 2,700 AAs) not assessed by DBD-Threader. Protein EEA1 was
not included because it has only one zinc finger domain and it was not
detected by threading. We also discarded zinc finger domains known DNA-
binding, e.g., domains from Sp1, YY1, Zac1, and BCL6. The vast majority of these
DNA-binding domains, if not all, are positives. Plus and minus signs denote the
positive and negative DNA-binding assessment on individual domains by DBD-
Threader.
1ZF4 was mistakenly labeled as ZF3 in table 2 of reference [60].
doi:10.1371/journal.pcbi.1000567.t005
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2-5 was found to be DNA-binding [62]. The second study was

performed on rat OAZ, the ortholog nearly identical (,96%) to its

human counterpart. Consistently, the DNA-binding region was

mapped within the first seven fingers of OAZ [63]. In addition, both

studies identified the same consensus DNA sequence recognized by

these fingers. Among other zinc fingers, it was suggested that the three

C-terminal zinc-fingers are essential for the interactions between OAZ

and another transcription factor Olf-1/EBF, which regulates olfactory

gene expression in rat [63,64]. Another study reported that zinc-fingers

14 to 19 mediate the interaction with transcription factors Smad1 and

Smad4, and that zinc-fingers 9 to 13 bind BMP (bone morphogenetic

proteins) target gene promoters together with Smads [65]. The latter

result that fingers 9–13 bind DNA apparently disagrees with the

prediction by DBD-Threader. One possible explanation for the

discrepancy is that zinc-fingers 9–13 of OAZ may adopt an atypical

DNA-binding mode not present in our template library. This is

supported by the observation that zinc-fingers 9–13 have unusually

long (.15 AAs) linkers between them (Figure 7), whereas other

structurally known DNA-binding zinc-finger proteins have shorter

linkers, typically six residues, connecting their fingers. In summary,

OAZ plays a central role in two distinct processes involving BMP

signaling and olfactory neurogenesis, and its multi-functional role is

fulfilled by different zinc fingers. While sequence or structure similarity

alone cannot distinguish the functional roles of zinc-fingers, which may

interact with DNA or other proteins, DBD-Threader provides a means

to assess the DNA-binding preference of individual zinc-finger

domains.

Discussion

Previously, threading-based methods were proposed for predict-

ing protein-protein and protein-ligand interactions [39,40]. In this

study, DBD-Threader extends this idea to the prediction of DNA-

binding function. The method employs two key functional

discriminating features: fold similarity and DNA-binding propen-

sity. Given a target, sequence threading is used to identify a template

that has a similar fold to the target. Compared with standard

sequence comparison methods, such as PSI-BLAST, threading is

more sensitive in detecting homology, especially when the sequence

identity is lower than 30% [41]. However, since threading itself does

not differentiate functional roles among sequences with a similar

fold, this can give rise to a considerable number of false positives. To

reduce the number of false positives, the DNA-protein interaction

energy is calculated to assess whether the target preferentially

interacts with DNA. In our approach, DBD-Threader uses a

statistical pair potential, which has been successfully implemented in

our previous application (DBD-Hunter) in predicting DNA-binding

function given the native protein’s structure [19]. Overall, DBD-

Threader achieves better performance than approaches using only

sequence homology. In benchmark tests on ,4000 proteins, DBD-

Threader is about 15% to 25% higher in sensitivity than PSI-

BLAST at the same false positive rate of less than 1%, using

templates that share less than 30% sequence identity with the

targets. The optimal performance of DBD-Threader has a MCC of

0.68, better than the MCC of 0.61 of PROSPECTOR and 0.55 of

PSI-BLAST, and is comparable to the performance of DBD-

Hunter where the experimental structure of the target is required.

There exist quite a few template-free methods for predicting DNA-

binding function [27,28,30,31] or DNA-binding protein residues [32–

34,36,37], the latter class of methods require the information that the

protein is known to be DNA-binding. Most of these methods use

machine-learning techniques, which provide no structural and limited

biological insights. While these template-free approaches have the

potential to predict the DNA-binding sites of a novel fold, their

accuracy is generally lower than template-based methods [19,37], and

their performance has not been tested in large-scale benchmarks.

DBD-Threader, as a template-based method, provides not only

function prediction, but also structural insights into the predicted

function by identifying the DNA-binding domains and associated

DNA-contacting protein residues. In benchmark tests using templates

with less than 30% sequence identity to the target, the backbone

RMSDs of the top-ranked structural models are within 6.5 Å of their

native structures for 70% of predicted DNA-binding domains. In

addition, the mean sensitivity and specificity of binding site predictions

is 60% and 93% among predicted DNA-binding proteins, whose

DNA-binding domains have been correctly identified in terms of

SCOP superfamily in most cases. The main disadvantage of a

template-based approach is that it cannot predict DNA-binding

function/sites for structures not present in the template library. In

addition, one should generally not expect a high-level of detailed

binding-site conservation between a template/target pair at low

sequence identity, though the success of DBD-Threader suggests that it

tends to identify functionally related template/target pairs, whose

DNA-binding sites are significantly similar in most cases.

In the post-genomic era, there is a pressing need for accurate,

automatic function annotation tools. DBD-Threader, implemented

Figure 7. DNA-binding prediction by DBD-Threader on human OAZ. The sequence of OAZ is illustrated on top, and significant hits to five
zinc-finger template proteins are shown below. These template proteins and the PDB/chain code of their structures are: GLI1 (2gliA), WT1 (2jp9A),
YY1 (1ubdC), Zif268 (1a1hA), and TFIIIA (1tf3A). The green bars, blue and red squares represent zinc-fingers, negative, and positive DNA-binding
predictions by DBD-Threader.
doi:10.1371/journal.pcbi.1000567.g007
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as a fully automated method, contributes to such a task. This is

illustrated in the application of DBD-Threader to the human

genome. The method predicts 1,654 DNA-binding proteins among

,19,000 unique sequences from human. Comparing the results of

DBD-Threader to their existing GO annotations, about 68% of the

positives by DBD-Threader agree. Most of the remaining

predictions have a GO annotation related to DNA-binding, such

as transcription factor activity. Therefore, they very likely play a

DNA-binding role. Moreover, DBD-Threader predicts a few

protein sequences among uncharacterized sequences as DNA-

binding. These can serve as candidates for further experimental

examination.

The predicted DNA-binding proteins from the human genome

contain 6,896 DNA-binding domains from 59 SCOP superfam-

ilies. The vast majority of these predicted DNA-binding domains

are cross-validated by other sequence annotation methods, such as

Pfam annotations. The largest population of DNA-binding

proteins is the zinc-finger proteins, which are about 41% of

predicted DNA-binding proteins. Interestingly, 22% of detected

zinc finger domains yield negative results based on the DNA-

protein interaction energy assessment. Case studies of these zinc

finger domains suggest that they likely perform other biological

functions, such as protein-protein interactions, but not direct

DNA-binding.

Function prediction from protein sequences is a challenging

problem. Since proteins are evolving, they can acquire new

functions and/or lose old ones. With respect to DNA-binding, a

possible scenario is that it evolves to become a regulator of DNA-

binding through interactions with other DNA-binding proteins,

instead of directly participating in DNA-binding. While such

evolution is biologically very interesting, it creates problems for

approaches to function inference based on sequence similarity

alone, such as those based on PSI-BLAST or HMMs. By assessing

DNA-binding propensity through use of the DNA-protein

interaction energy, DBD-Threader can help to discriminate

DNA-binding from other functional roles, thus improving the

overall quality of the predictions. Application of the method

generates not only potentially interesting positives, but also

negatives evolved from direct DNA-binding. Through this study,

we identified 22% of zinc finger domains annotated in the human

genome as such negatives with DBD-Threader.

Methods

Availability
All datasets listed below, the statistical potential parameters,

prediction results on the human genome, and a web-server

implementation of DBD-Threader are freely available at http://

cssb.biology.gatech.edu/skolnick/files/.

Data sets
Template library of DNA-binding domains. The PDB

(April 2008 release) was queried to retrieve all protein-DNA

complex structures determined by either NMR or X-ray

(resolution better than 3.0 Å). The resulting 1,225 complex

structures were further split into chains. SCOP annotations

(version 1.73) were subsequently used to obtain domain

definitions [43]. If no SCOP definition exists, the program

DDOMAIN was used to partition the protein chain into domains

[66]. A DNA-protein contact between a protein amino acid and a

nucleotide functional group is defined if a pair of heavy atoms is

within 4.5 Å, and correspondingly the protein residue is

considered as DNA-binding if it contains at least one DNA-

contacting heavy atom. A DNA-binding domain is selected if it has

at least five DNA-binding residues. Two DNA-binding domains

are considered redundant if they share more than 90% global

sequence identity and more than 80% DNA-protein contact

identity. The number of DNA-protein contacts and structure

resolution were used to select only one representative among

redundant entries, leading to a non-redundant set of 794

structures. These constitute our template library of DNA-binding

domains.

Benchmark sets. A set of 179 DNA-binding proteins

(DB179) and a set of 3,797 non-DNA-binding protein (NB3797)

from a previous study [19] were used as the benchmark sets.

Entries in each set are non-redundant with less than 35% sequence

identity among each other. The set DB179 has also been used as

the training set to derive parameters of the DNA-protein pair

potential [19]. In the benchmark test on DB179, a global sequence

identity cutoff of 30% was set to exclude homologous proteins

from the statistical potential derivation, and the potential

parameters derived individually for each target were used in the

benchmarking interfacial energy calculations. The sequence

identity is defined as the ratio of the number of identical

residues over the length of the shorter sequence, and the

sequence alignment was performed using the ALIGN0 program

[67] from the FASTA2 package. For targets from NB3797, we

used the parameters derived from the full set of DB179.

Human genome. A set of 19,293 unique protein sequences

from the human genome were downloaded from the UniProt

database (release version 13.3). DBD-Threader was applied to

18,621 of these sequences comprising more than 40 and less than

1,700 amino acids. Gene Ontology annotations (May 2008 release)

by the European Bioinformatics Institute were used as the source

for the GO annotations. Protein sequences from the human

genome were classified into four sets, DB, UB, NB, and UK,

according to their available GO annotations. The set DB denotes

sequences annotated with a GO entry containing the key words

‘‘DNA binding’’. The set DB was further culled using the evidence

code IDA (Inferred from Direct Assay), resulting in a subset of DB

with experimental evidence (named DB EXP). A list of molecular

function entries that likely imply DNA-binding function, such as

transcription factor activity, nucleotide acid binding, RNA

binding, etc, was manually curated from the GO dictionary.

This list was then used to build the set UB, in which each entry has

at least one annotation from the list. The remaining sequences

with at least one molecular function annotation, none of which

involve DNA binding were assigned to the set NB. Finally,

sequences with unknown molecular function belong to the set UK.

Prediction protocol
The method DBD-Threader has three main modules: sequence

threading, domain partition, and function prediction. Sequence

threading was conducted using the in-house program PROSPEC-

TOR [41]. The purpose of threading is to examine whether a

target sequence encodes a structural fold similar to any structurally

known DNA-binding domain. Specifically, the target sequence is

threaded sequentially against two template libraries. The first

library is a regular template library composed of ,8000 protein

structures, which share less than 35% global sequence identity

among each other; the second library is composed of DNA-

binding domains described above. The target is first threaded

against the regular template library, generating statistically more

robust mean and standard deviation of threading scores than

threading directly on the much smaller library of DNA-binding

domains. Then, the mean and standard deviation are used to

calculate the Z-scores when threading templates of the DNA-

binding domain library are used. Note that in the benchmark test
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on DB179/NB3797, we excluded all templates with more than

30% sequence identity from both threading libraries for any

target. In the application to the human genome, the exclusion rule

was eliminated.

For each pair of target/template proteins, a corresponding Z-

score is calculated as

Z{score~ S{SSTð Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SS2T{SST2

q

where S is the score associated with the best alignment between the

pair, and quantity in angle brackets denotes the mean of the

quantity over all entries in the regular template library. Based on

our benchmark results, we consider templates with Z-scores.6 as

significant hits, which are then ranked according to their Z-scores.

Since most DNA-binding proteins are composed of multiple

domains, it is necessary to locate the domain(s) that directly fulfill

DNA-binding function. To this end, an iterative clustering

procedure was implemented to partition domains of the target

sequence based on significant template hits. Clustering is required

because a DNA-binding protein may contain multiple DNA-

binding domains, which can hit different sets of templates. Initially,

the top Z-score-ranked template is chosen as the clustering seed, and

all significant templates having more than 50% overlap with respect

to the seed are moved to this cluster, and excluded from subsequent

clustering. After this process, if there is any template left, the highest

ranked template remaining is used as a new clustering seed, and this

clustering procedure is repeated until no template is left. The

clustering is used to consolidate redundant templates that hit the

same sequence region, and a domain can then be defined according

to the alignment of a seed to the target. The threading and partition

procedures are iterated for any sequence region without a significant

hit that is longer than 40 amino acids, until no new domain is found.

This iterative procedure can reduce missing hits to domain repeats,

e.g., zinc finger clusters, because threading itself only returns the

most significant alignment from each template in each round.

For function prediction, we evaluate the DNA-protein interaction

energy and use it to assess DNA-binding propensity. Here, we consider

only significant templates hits whose DNA-protein contacts have been

obtained beforehand using the experimentally determined DNA-

protein complex structures. The contacts between the target and a

corresponding template DNA are inferred by replacing original

template protein residues with aligned target residues. The protein-

DNA interaction energy is then calculated using these contacts and a

statistical pairwise potential developed previously [19]. Negative and

positive energy values indicate attractive and repulsive interactions,

respectively. A target is predicted to be a DNA-binding protein if at

least one template yields an energy value below a specified threshold,

and non-DNA-binding if no template satisfies the energy criterion.

Finally, the SCOP superfamily domain assignment is inferred from the

highest Z-score-ranked template that satisfies the energy criteria, and

corresponding DNA-binding residues are also transferred from this

template. The SCOP superfamily prediction will be skipped if the top

template does not have official SCOP classification.

The optimal energy threshold values determined in benchmark

tests on DB179/NB3797 are shown in Table 6. Depending on the

threading Z-score of their templates, the targets fall into two

regimes: Medium (20$Z-score.6) and Easy (Z-score.20). In each

regime, we select an optimal energy threshold that gives the highest

MCC of predictions on DB179 and NB3797. As one expected, a

more permissive energy value is obtained for the Easy targets. In the

benchmarks, the ROC and PR curves of DBD-Threader were

obtained by varying the energy threshold for templates in the

Medium regime, and use the optimal energy threshold for templates

in the Easy regime. The optimized values were adopted in the

application to the human genome.

Benchmark assessment
DBD-Threader was compared with three alternative approaches:

DBD-Hunter [19], PROSPECTOR [41], and PSI-BLAST [11]. To

ensure fair comparison, the same template library and benchmark

sets DB179/NB3797 were employed. In case of DBD-Hunter,

structures of targets were used as input, and the results obtained with

optimized parameters are reported. When applying PROSPEC-

TOR, the threading Z-score was used as the criterion for predictions.

A target protein is classified as DNA-binding if it hits a template with

a Z-score higher than a specified threshold and as a non-DNA-

binding otherwise. When applying PSI-BLAST (version 2.2.17), two

position specific sequence profiles were derived separately for each

target using two libraries: the NCBI-NR protein sequence library (the

Jul 2007 release), and the UniProt sequence library (UniRef100

version 15.5). Each profile was obtained using up to four rounds of

scanning the respective libraries. We tested up to twenty rounds of

iterations for profile derivation and found that four rounds gave the

best performance in our benchmark tests. An inclusion E-value

threshold of 0.001 and default values for other arguments were

employed. For each profile generated, a final PSI-BLAST run was

performed on the sequence library of the DNA-binding protein

templates. If a target hits a template with an E-value higher than the

specified threshold, then the target is classified as being a DNA-

binding protein; otherwise, it is classified as a non-DNA-binding

protein. For each target in the benchmark tests, its homologs with

global sequence identity .30% were excluded from the template

library of DNA-binding proteins. Note that the exclusion rule was not

applied during the derivation of the PSI-BLAST profiles, and we

allow all sequence hits for building the profiles.

In each prediction scenario, the numbers of true positives, false

positives, true negatives and false negatives are designated as TP,

FP, TN, and FN, respectively. In case of DNA-binding function

prediction, a TP refers to a protein sequence correctly predicted as

DNA-binding protein; in case of DNA-binding site prediction, TP

refers to an amino acid correctly assigned as a DNA-binding

residue. Performance measures are defined as the following:

Sensitivity~Recall~TP= TPzFNð Þ

FPR~FP= TNzFPð Þ

Specificity~TN= TNzFPð Þ

Accuracy~ TPzTNð Þ= TPzFNzTNzFPð Þ

Precision~TP= TPzFPð Þ

MCC~ TP|TN{FP|FNð Þ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPzFNð Þ TPzFPð Þ TNzFPð Þ TNzFNð Þ

p
:

Table 6. Optimized Z-score and energy threshold parameters
used by DBD-Threader.

Z-score Range Energy Threshold

.20 4.6

6–20 26.4

doi:10.1371/journal.pcbi.1000567.t006
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