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The intrinsic ability of protein structures to exhibit the geometric
and sequence properties required for ligand binding without
evolutionary selection is shown by the coincidence of the proper-
ties of pockets in native, single domain proteins with those in
computationally generated, compact homopolypeptide, artificial
(ART) structures. The library of native pockets is covered by
a remarkably small number of representative pockets (∼400), with
virtually every native pocket having a statistically significant match
in the ART library, suggesting that the library is complete. When
sequences are selected for ART structures based on fold stability,
pocket sequence conservation is coincident to native. The fact that
structurally and sequentially similar pockets occur across fold clas-
ses combined with the small number of representative pockets in
native proteins implies that promiscuous interactions are inherent
to proteins. Based on comparison of PDB (real, single domain pro-
tein structures found in the Protein Data Bank) and ART structures
and pockets, the widespread assumption that the co-occurrence of
global structure, pocket similarity, and amino acid conservation
demands an evolutionary relationship between proteins is shown
to significantly underestimate the random background probability.
Indeed, many features of biochemical function arise from the phys-
ical properties of proteins that evolution likely fine-tunes to
achieve specificity. Finally, our study suggests that a repertoire of
thermodynamically (marginally) stable proteins could engage in
many of the biochemical reactions needed for living systems with-
out selection for function, a conclusionwith significant implications
for the origin of life.

protein evolution | protein pocket space | protein–ligand interactions

One of the remarkable features of proteins is their ability to
bind a variety of small molecules such as metabolites and

drugs, with most binding surfaces formed by concave shapes or
“pockets” on the protein’s surface (1). The response of proteins to
ligand binding gives rise to a plethora of biological processes that
are essential for life (2). The ability to engage in these interactions
reflects the convolution of the fundamental geometric, physical,
and chemical properties of proteins with selection due to evolu-
tion. How could the ability to bind ligands have arisen? Consider
two extreme views: The “inherent functionality model” asserts
that the ability to engage in such interactions is just a physical
chemical property of proteins, with the formation of ligand-bind-
ing cavities arising from defects in the packing of secondary
structural elements comprised of hydrophobic and hydrophilic
residues (3, 4), which evolution then exploits and amplifies. At the
other extreme, in the “acquired functionality model,” proteins
were spherical objects without ligand-binding pockets. Evolution
selected for function by literally sculpting out pockets to create
functionally competent proteins. The inherent functionality model
has the appeal that it a priori provides a nonzero background
probability on which evolutionary selection operates. Because it is
intrinsic, proteins could engage in a large variety of functions.
These low-level, ligand–protein interactions should be highly pro-
miscuous and act like biochemical noise that would be difficult, if
not impossible, to eliminate. In contrast, the acquired functionality
model implies that selection for function is very rare. Promiscuous
interactions, while possible, would not be inherent and could
be readily eliminated by functional selection. The goal of this

contribution is to provide insights into the interplay of physics and
evolution in dictating protein ligand-binding properties by elimi-
nating for representative protein models any selection for protein
function and then exploring the overlap of the structure and se-
quence properties of the resulting pockets with those in native
proteins.
To test which of these two views of the origin of protein bio-

chemical function is likely more correct, one must remove the
effects of evolutionary selection for protein function. Protein de-
sign studies are one way of achieving this experimentally. Support
for the inherent functionality model is provided by Hecht et al.,
who created a combinatorial library of designed four-helix bundle
proteins expressed inEscherichia coli, through binary patterning of
six polar and five nonpolar residues (5). The resulting superfamily,
neither designed nor selected for function, was screened for a va-
riety of functions including heme binding, peroxidase, and lipase
activities. The majority of proteins bound heme, with a sizeable
fraction showing activity in all assays. This suggests that protein
structure and sequence composition provide rudimentary activity
that “serve(s) as a feedstock for evolution.” It also agrees with
Jensen’s conjecture (6) that “primitive enzymes possessed a broad
range of specificity” that would allow an early cell to carry on
the chemistry of life. This idea is compatible with observations
that enzymes routinely catalyze other, sometimes barely related,
chemical reactions (7–10). Such latent functions could then
evolve without interfering with the original catalytic activity
(11–13). Tawfik et al. argue that catalytic promiscuity is inherent
to enzymes and suggest that contemporary enzymes diverged
from ancestral proteins that catalyzed a plethora of low-level
reactions (9, 10). Consistent with the notion that such activity
is ubiquitous, protein design studies often find the desired low-
level function after a remarkably small number of generations
(14–16). These experimental studies suggest that promiscuous,
low-level protein function is inherent.
How can one demonstrate that the ability to engage in a vari-

ety of low-level biochemical functions without selection is an
intrinsic property of proteins that holds not just for a limited
number of designed proteins (5, 8, 17, 18), but is likely true in
general? Here, computational models of proteins can play a sig-
nificant role. They offer the advantages of being comprehensive
and could allow us to tease out which features of protein struc-
tures/sequences likely give rise to which functional properties. In
earlier computational studies (3, 4, 19–21), the ability of protein
structures to exhibit some of the geometric features required for
molecular function sans evolution was examined in three rep-
resentative protein structure libraries: the PDB library, real,
single domain protein structures found in the Protein Data
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Bank (22); the ART library, computationally generated, compact
homopolypeptide, artificial, structures with protein-like second-
ary structure; and the QS library, quasi-spherical, random pro-
tein structures packed in the same average spherical volume as
proteins but lacking backbone secondary structure and hydrogen
bonding. Without evolutionary selection, the library of artificial
structures has statistically significant structural matches to the
global structures of native proteins and due to defects in packing
secondary structural elements, native like pocket volumes.
However, the similarity of their pockets to native proteins was
unexplored. While QS structures have a statistically significant
match to the global structures of native proteins, lacking sec-
ondary structure, they are more densely packed and contain
pockets that are too tiny to bind small molecules. Thus, back-
bone hydrogen bonding is likely one important underlying cause
of protein function.
Since QS proteins lack the inherent features required for mo-

lecular interactions, while ART proteins have cavities of the req-
uisite volume, the ART library is the reference against which we
will compare its features with native pockets. To explore the de-
pendence of the ART results on the potential used to evaluate
stability, we generated sequences whose stability is determined by
burial, secondary structure, and residue-based pair preferences
(ART), or just by burial and secondary structure preferences in “no
pair potential” (“no-pr”) (3). Comparison will be made between
pockets in native protein structures, PDB–PDB; pockets in the
PDB to those in artificial structures, PDB–ART; and among the
artificial structures, ART–ART.We shall determine the number of
structurally distinct pockets needed to represent all pocket struc-
tures and examine the completeness of the space of protein pocket
structures—that is, whether all representative pockets are already
present in the library of solved protein structures (22). Next, we
explore the relationship between pocket geometry and global
structural similarity. Does high global fold similarity demand that
the protein pair always have similar ligand-binding pockets? Con-
versely, given a pair of structurally similar pockets, how similar are
the global folds of the proteins where they reside? The importance
of this study is to examine how often structurally similar pockets
occur in proteins of completely different global fold and whether
this is common to both native and artificial proteins. If so, this
has important implications for both ligand-binding promiscuity

and the use of global structural similarity to infer evolutionary
relationships and/or functional similarity. We next delineate the
interrelationship between global structure, pocket geometry, and
amino acid sequence. For ART sequences selected to maximize
stability in structures with the same backbone structure, we will
explore the similarity of their protein pockets and whether they
show the same extent of sequence conservation at structurally
equivalent positions as a function of pocket similarity. Finally, we
highlight the implications of this work.

Results
In what follows, we will compare the global similarity of protein
structures and the structural similarity of their pockets. For
global comparison, the structure alignment algorithm that uses
the template modeling score (TM-score) as the comparison
metric is used (23, 24). The TM-score ranges from 0 for un-
related structures to 1.0 for identical structures, with a mean of
0.30 for the best structural alignment of a random protein
structure pair. For pocket comparison, the sequence-order-in-
dependent APoc algorithm with similarity assessed by the Pocket
Similarity score (PS-score) is used (25). The PS-score ranges
from 0 for entirely dissimilar pockets to 1.0 for identical pockets.
A table of P values for a given PS-score is given in Table S1. For
pocket pairs of similar length, a PS-score above 0.38 is significant
with a P value < 0.03.

How Many Representative Pockets Are There, and Is Pocket Space
Complete? If there were a small number of distinct ligand-binding
pockets that shared significant sequence conservation, this would
have profound consequences. Most importantly, it would imply
that similar ligand–protein interactions should occur across dif-
ferent protein folds and rationalizes the large number of off-
target interactions of drugs (26). In Fig. 1, for a representative
set of native, single domain proteins between 40 and 250 resi-
dues in length (whose pairwise sequence identity < 35%; Methods)
and corresponding ART proteins, we plot the number of rep-
resentative distinct pockets, the fraction of target pockets that
match these representative pockets (i.e., which have at least
one matching pocket), and the fraction of unmatched (singleton)
pockets versus PS-score without a template size restriction (see
Fig. S1 for results when the template pockets are restricted to
be smaller than 80 residues in length). What is striking is that at
a PS-score of 0.38, a small number of pockets, 132 (180), in the
PDB (ART) library are required to cover 99.0% (91.5%) of the
space of PDB pockets. PDB–PDB and PDB–ART pockets behave

Fig. 1. (A) Number of representative, distinct pocket structures in the pocket
template library that match pockets in the given target library at the given
PS-score. (B) Fraction of pockets in the target library that are matched to
representative pocket templates at the specified PS-score. (C) Fraction of
target pockets that do not have a match to any other pocket structure in
the pocket template library at the specified PS-score. That is, self-matching
pockets are excluded from the PDB pocket template library. Solid (dashed)
lines are protein sequences selected for global stability in ART structures
generated using burial, secondary structure, and (without) pair potentials.

Fig. 2. Best pocket match between protein structures. For different size
pockets, cumulative fraction of proteins whose best PS-score to a pocket in
the given structural library is greater than or equal to the PS-score on the
abscissa. The mean PS-score for a significantly related pair of pockets (P <
0.03) is indicated in the dotted black line.
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similarly to ART–ART structures that require 114 pockets to
cover 99.5% of all pockets. The reason for this relatively small
number is that a few large pockets cover the space of many small
pockets. The average number of residues/template-pocket is
106.0 (91.4) for PDB (ART) templates that cover all PDB
pockets. At a PS-score of 0.40, as shown in Fig. 1B, 92.5%
(91.1%) of PDB (ART) pockets match one of the 339 (420)
representative PDB (ART) structures, with an average number
of residues/template-pocket of 87.8 (80.8). Thus, the number of
distinct pocket structures found in either PDB or ART proteins
is remarkably small. As the PS-score rises, as in Fig. 1C, the
number of unmatched pockets increases. Little dependence is
seen on which potential is used to generate the ART pocket
sequences, suggestive that these conclusions are quite robust.
Further evidence that pocket space is likely complete is pro-

vided in Fig. 2, where the distribution of best PS-scores of pairs
of pockets is between native proteins, between ART proteins,
and when PDB proteins are compared with ART templates.
Consistent with Fig. 1, virtually every native ligand-binding
pocket has a statistically significant structure match in the ART
library and does not require evolution for them to occur; rather,
they are a geometric effect arising from defects in the packing of
secondary structural elements. The most distinct differences are
seen when artificial pockets are compared with PDB pockets,
with larger discrepancies seen for larger pockets. As pockets
increase in size, structural differences are amplified, as more
residues must be aligned to give the same PS-score.

Global Structural Similarity Versus Pocket Similarity. The global
similarity of protein structures is often used to infer functional
similarity (27, 28). The underlying justifications are the assump-
tions that a similar global fold is sufficient to guarantee that the
pair of proteins have structurally similar pockets and that the
coincidence of such pockets (implicitly assumed to be very rare)
implies an evolutionary and, therefore by implication, functional
relationship. To explore the validity of these assumptions, in
Fig. 3, for the largest pocket in the protein of interest, we ex-
amine, for a given extent of global structural similarity as assessed
by their TM-score, the cumulative fraction of proteins whose best
PS-score to a pocket in a protein in the library of interest is
greater than or equal to the abscissa. For structurally unrelated
proteins (TM-score= 0.18), most pocket structures are dissimilar;
yet, even here, ∼0.5% of their pockets are structurally similar,
a consistent fraction for both native and artificial proteins, in-
dependent of how the ART sequences are generated. For globally
similar proteins with a TM-score = 0.40, 16% of PDB–PDB pro-
teins have structurally similar pockets, with similar behavior

exhibited by all three types of compared structures (PDB–PDB,
PDB–ART, ART–ART). This does not mean that there are few
PDB proteins with this level of pocket similarity. From Fig. 2,
greater than 90% of proteins have a pocket that matches another
protein in the PDB, but most of these matched pockets are in
proteins at different levels of global fold similarity or even with
dissimilar folds. For structurally very similar proteins having TM-
scores of 0.55 and 0.60 (where for native proteins the pair could
be evolutionarily related), pairs of PDB–PDB proteins have sig-
nificant pocket matches in ∼22% of the cases, a fraction quite in-
sensitive to TM-score. Since for all TM-score values, there are
significant matches to structurally similar pockets in both the PDB–
ART and ART–ART libraries, having a significant pocket match
does not guarantee that the pair of proteins shares any evolutionary
relationship whatsoever. Interestingly, ART–ART and PDB–ART
pairs have a larger fraction of significant pocket structural matches
for globally similar structures (those with TM-scores >0.4) than
PDB–PDB pairs. The implication is that evolution seems to have
acted to increase the specificity for particular ligands for a given
backbone by making pockets in globally similar structures more
dissimilar than would be expected on the basis of their global
structure alone. As shown below, the observed pocket variability in
similar global folds is readily achieved by appropriate sequence
variability. However, even for a TM-score of 0.60, global fold sim-
ilarity is insufficient to guarantee the presence of structurally
similar pockets, as ∼77% of pairs of PDB proteins have dissimilar
pockets. Thus, global structural similarity alone cannot guarantee
that a pair of proteins has a similar ligand-binding pocket.
We next consider the converse and examine the extent of

global structural similarity for a given extent of pocket similarity.
In Fig. 4, for a given PS-score, we show the fraction of proteins
whose TM-score is less than or equal to the abscissa. On com-
paring PDB–PDB or ART–ART structures, both curves are very
similar even up to a PS-score of 0.55. Thus, the fraction of
globally similar structures that have structurally similar pockets
up to quite significant PS-scores is independent of any evolu-
tionary selection. When PDB structures are compared with ART
structures, proportionally more similar pockets are found in
more globally dissimilar proteins. There is also the trend that as
the pockets become more similar so does the global structural
similarity of the protein pair. However, even for a PS-score of
0.5, about 12% of similar pockets are in unrelated structures
(TM-score = 0.30). This is consistent with previous observations
that similar pockets occur across different folds and different
proteins (29, 30), a conclusion now shown to hold more com-
prehensively and rationalized as to why it happens. Thus, the

Fig. 3. For fixed TM-score, the cumulative fraction of proteins whose best
match PS-score is greater than or equal to abscissa. The PS-score for a sig-
nificantly related pair of pockets is indicated in the dotted black line.

Fig. 4. For a given PS-score, cumulative fraction of proteins with TM-score
less than or equal to the abscissa. Solid (dashed) lines are protein sequences
generated with burial, secondary structure, and (without) pair potentials.
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major conclusion from Fig. 4 is that pocket similarity and global
structural similarity are only weakly correlated. In fact, we find
that there is very little overlap between residues aligned on the
basis of the global structural alignment and the pocket alignment
(Table S2). Pockets often reorient and move about within the
same global fold. This reflects a significant interplay between
the backbone structure and the specific amino acids that form
the pocket. Given that similar pockets can occur in proteins
of completely different global structures and dissimilar pockets
can occur in proteins with the same global structures, the issue
is to establish what aspects of pocket similarity are required to
infer functional similarity.

Global Fold Versus Protein Sequence in Determining Pocket
Similarity. Given structurally similar pockets, we next explore
the interrelationship between global structure and protein se-
quence in dictating pocket similarity. If one has an open clam-
shell-like structure, on average, then global fold should dictate
pocket location. However, when the sequence is composed en-
tirely of small residues, then the resulting pocket will be much
larger than if bulky amino acids dominate. Thus, binding pocket
size/location should depend on the interplay of global structure
and protein sequence. By way of illustration for ART target and
templates whose backbone structure is exactly the same, in Fig.
5, for two sets of 20 protein stability-selected sequences (with
average sequence identity of ∼7%), one set selected with and the
other without using the pair potential, we plot the resulting PS-
score distribution. These results suggest that in native proteins,
pocket geometric similarity as a function of sequence could vary
dramatically even for proteins with globally similar structures;
viz. as indicated above, pockets are very plastic, with global fold
and pocket geometry weakly coupled. This is exactly what hap-
pens in native ligand-binding pockets that have virtually the
identical span of PS-scores in globally very similar structures
(TM-score ≥ 0.6) as ART protein sequences (see SI Methods
for additional details). Overall, the space of native pocket shapes
that nature explores is remarkably similar to that found in the
library of artificial pocket structures. Thus, protein pocket struc-
ture is likely strongly driven by selection for fold stability rather
than by function.
We also considered in Figs. S2 and S3 the effect of thermal

fluctuations on PS-score in a set of 2,801 nonhomologous pro-
teins, whose distorted structures were clustered by their global
Cα rmsd from native. For example, in structures with a 1.0 <
rmsd < 1.5 Å, greater than 95% of the pockets have a significant
match to the native pocket. For 21–30 residue pockets in struc-
tures whose 0.0 < rmsd < 0.5 (1.0 < rmsd < 1.5) Å, the mean PS-

score is 0.68 ± 0.12 (0.57 ± 0.11) for pockets 21–30 residues in
length. For additional details, see Table S3. Thus, the majority of
thermal fluctuations has a marginal effect on pocket identifica-
tion and overlap with the native, with the effect diminishing with
increasing pocket size.
How conserved are the residues at a given position in struc-

turally similar pockets? Do pockets have to be related by evo-
lution for such sequence conservation to occur, or can it just
result from the selection of sequences that are stable in the fold
of interest? Since native protein pockets are the convolution of
physical interactions and evolution, to tease out these effects,
in Fig. 6, we compare the fraction of proteins that have a given
number of pocket residues conserved at structurally aligned
positions in the pocket as a function of PS-score for both ART
and PDB proteins. Even up to a PS-score of 0.5, the sequence
conservation behaviors of PDB–PDB, PDB–ART, and ART–ART
sets of pockets are very similar. Once again, as in Fig. 4, similar
behavior does not demand that the pair of pockets be evolution-
arily related. This is suggestive of the origin of functional pro-
miscuity conjectured by Jensen (6) and Tawfik (8, 9, 13). We find
on comparing PDB–PDB and PDB–ART pocket pairs (Table S4,
columns 2 and 3) that ALA, VAL, ILE, LEU, and GLU are
conserved independent of pocket structural similarity; these are
residues that are just likely to be at structurally equivalence pocket
positions. ARG (SER) becomes more (less) conserved as the
pocket similarity increases. Thus, ART proteins recapitulate the
native results for which residues are conserved, suggesting that to
a significant extent the degree of sequence conservation in pockets
is driven by the selection for thermodynamic stability.

Discussion
Overall, there is a remarkable coincidence of the properties of
native protein pockets with those of artificial proteins, whose
sequences are selected purely for fold stability and not function.
We find that the structural space of pockets is remarkably small
and likely complete. Combined with the fact that similar pockets
occur across many different types of protein structures with
similar patterns of amino acid conservation, we conclude that
ligand-binding promiscuity is likely an inherent feature resulting
from the geometric and physical–chemical properties of proteins.
This promiscuity implies that the notion of one molecule–one
protein target that underlies many aspects of drug discovery is
likely incorrect, a conclusion consistent with recent studies (26,
30, 31). Moreover, within a cell, a given endogenous ligand likely
interacts at low levels with multiple proteins that may have dif-
ferent global structures.

Fig. 5. Relationship of protein sequence and PS-score for a fixed protein
backbone in the artificial structure library in blue and in PDB structures in
black. Solid (dashed) blue lines are protein sequences generated using burial,
secondary structure, and (without) pair potentials.

Fig. 6. For a given PS-score and pockets that are 31–40 residues in size, the
fraction of proteins with a given number of conserved residues at structur-
ally aligned positions. The black dotted line is the background for randomly
related pockets.
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This view is confirmed in Fig. S4, where for nonhomologous
proteins in the human and all proteomes, we examine the his-
togram of the distribution of the number of known interactions
a given ligand makes with nonhomologous receptor proteins.
The results for 1,284,577 entries extracted from the ChEMBL15
(32) and BindingDB (33) databases are reported. We note that
the reported number of ligand–receptor interactions is a lower
bound as many such interactions are currently uncharacterized.
Even so, in more than 1,400 ligands, each binds to 40 or more
nonhomologous proteins. Thus, there is considerable experi-
mental evidence that a given ligand interacts with many proteins
in a proteome; viz. such interactions are quite promiscuous.
While it is very likely that evolution acted to selectively enhance

this low-level function to provide specificity, we suspect that back-
ground biochemical noise reflective of a soup of functions is always
present. On the one hand, this produces robustness, yet it makes
regulation and control more difficult. How nature achieves the
collective behavior needed for living cells is not fully understood.
Furthermore, even when protein structures are highly similar, there
is remarkable plasticity in pocket geometry. Protein pocket shape is
just partly coupled to global fold. The coincidence of structurally
similar pockets in structurally similar proteins with similar patterns
of residue conservation cannot in and of itself be used to infer an
evolutionary relationship between proteins. Thus, the implicit and
widespread assumption that the co-occurrence of global structure,
pocket similarity, and amino acid conservation demands an evolu-
tionary relationship between proteins significantly underestimates
the background probability for the random coincidence of such
properties. The clear implication is that the fundamental physical–
chemical properties of proteins are sufficient to explain many of
their structural and molecular functional properties, with evolution
acting to fine-tune/amplify their biochemical function, as in the in-
herent functionality model. This suggests that a collection of sta-
bility-selected proteins should have the inherent ability to engage in
many of the biochemical reactions needed by living systems without
any selection for function; this work has significant implications for
the origin of the biochemical processes needed for life.

Methods
Pocket Detection. Two pocket detection methods are used in this study. For
comparative studies between the artificial and native protein pocket struc-
tures, an in-house pocket detection method CAVITATOR was used (25).
CAVITATOR is a geometry-based method similar to LIGSITE (1), but it is
designed to be less sensitive to minor structural distortions. Each protein-
heavy atom ismapped to a cubic lattice gridwith a spacing of 1Å and occupies
the central grid point and all adjacent grid points within

ffiffiffi
2

p
Å. Thus, a single

heavy atom occupies 27 grid points. For an unoccupied point to be part of
a pocket, it must be bounded on both sides by occupied points along the X, Y,
or Z directions. For ligand/protein complex structures collected from the PDB,
the program LPC (34) was applied to extract protein residues that make direct
contact with each ligand, yielding observed ligand-bound protein pockets.

Pocket Comparison. For the structural alignment and comparison of protein
pockets, the APoc algorithm was developed, with the details of the method
described elsewhere (25). Here, we recapitulate the main ideas. Given two
input pockets, a template and a target, APoc evaluates their PS-score, which
measures the similarity in their backbone geometries, side-chain orientations,
and the chemical similarities between the aligned pocket-lining residues. The
length of a pocket is the number of Cα atoms of the pocket residues.
Suppose an alignment is obtained between a query (target) of length LQ and
a template of length LT. The PS-score of the alignment is

PS ‐ score= ðS+ s0Þ=ð1+ s0Þ; [1]

S=
1
LQ

max
sup

"XNa

i= 1

piri=
�
1+d2

i =d
2
0

�#
; [2]

Pi =
�
1 if θi ≤ π=3
maxð0:1; 0:5+ cos θiÞ if θi > π=3

; [3]

ri =max
�
0:8; δ

�
aQi ; a

T
i

��
: [4]

Here, Na is the number of aligned residue pairs, di is the distance in Å
between the Cα atoms of the ith aligned residue pair, and the empirical
scaling factor d0 ≡ 0.70(LQ − 5)1/4 − 0.2. The constants in d0 were obtained by
fitting the distribution of Cα distances in random alignments of pockets. pi

measures the directional similarity between two Cα to Cβ vectors in the two
pockets, which span an angle θi at the ith alignment position of two non-
Glycine residues. For Glycine, the value of pi is assigned 1 if both amino acids
are Glycine and 0.77 if only one residue is Glycine. The latter is the mean pi

derived from random alignments. ri measures the chemical similarity of the
two aligned amino acids. δðaQi ;aTi Þ has a value of 1 if the two amino acids
aQi ; a

T
i belong to the same group (I–VIII) defined as: I (LVIMC), II (AG), III (ST),

IV (P), V (FYW), VI (EDNQ), VII (KR), VIII (H) (29), and 0 otherwise. The scaling
factor s0 = 0:23− 12=L1:88Q ensures that the mean score of two aligned ran-
dom pockets is independent of their length. To calculate the distances used
in di and pi, aligned residues are superimposed using the Kabsch algorithm
(35) to minimize the rmsd of the full or subset of aligned residues. In prin-
ciple, the number of all possible superpositions exponentially increases as
the alignment length grows. The notation “max” in Eq. 2 indicates that the
PS-score corresponds to the superposition that gives the maximum of all
scores. In practice, a heuristic iterative extension algorithm is used to cal-
culate the PS-score, similar to that used for calculating the TM-score (36).
Note that identical pocket structures have a PS-score of 1.0, which is the
upper bound of the PS-score.

To obtain the “optimal” alignment, APoc consists of three phases: In the
first phase, several guessed solutions are generated from gapless align-
ments, secondary structure comparisons, fragment alignments, and local
contact pattern alignments. Starting from these guessed “seed” alignments,
dynamic programming is iteratively applied in the second phase. This yields
optimal sequential (viz. protein sequence order–dependent) alignments
between two pocket structures. In the third phase, an iterative procedure
searches for the best nonsequential alignment between two pockets, which
is then selected if this alignment has a better PS-score than the optimal
sequential alignment. The problem of finding an optimal nonsequential
alignment (or match) is converted to the Linear Sum Assignment Problem
(LSAP), which is a special case of integer programming and is also equivalent
to the problem of finding a maximum weight matching in a weighted bi-
partite graph. To efficiently solve LSAP, we implemented the shortest aug-
menting path algorithm (37), which has a polynomial time complexity of
O(N3), where n = max(LT, LQ).

Statistical Significance. The statistical significance of the PS-score is estimated
by comparing millions of randomly selected pocket pairs (25). The distribu-
tion of PS-scores are fitted to the type I extreme value distribution (Gumbel
distribution):

fðzÞ= exp½−z− expð−zÞ�; [5]

where z denotes the Z-score given by z= ðs− μÞ=σ. The variable s denotes
the PS-score, μ is the location parameter, and σ is the scale parameter. The
corresponding P value of the score can be calculated according to the
formula:

P = 1− exp½−expð−zÞ�: [6]

The location and scale parameters can be estimated through linear re-
gression fits of

μ= a+b lnðLQÞ+ c lnðLT Þ
σ =d + e lnðLQÞ+ f lnðLT Þ; [7]

to obtain the parameters a to f through maximum likelihood estimates
using the Extreme Value Distribution (EVD) package in the statistical plat-
form R (www.r-project.org). The values of a to f are 0.3117, 0.0277, –0.029,
0.0366, 0.0025, and –0.0084, respectively. The P value of PS-scores for dif-
ferent size cavities is given in Table S1.

PDB Dataset. This set, composed of 5,371 nonredundant monomeric, single
domain protein structures from 40 to 250 residues in length, serves as the
reference set of PDB structures and is also the primary random background
for statistical significance analysis. All proteins in this set have <35% global
pairwise sequence identity. We applied CAVITATOR to each structure and
restricted our analysis to the largest pocket (the target) that contains at least
10 and no more than 60 residues and has a volume >100 Å3 (100 grid points).
PDB template pockets have no size restriction.
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Artificial Structures. For a randomly chosen subset of PDB comprised of 1,259
proteins, we extract the corresponding secondary structure preferences and,
following the previously described procedure (38), performed TASSER
structure predictions of the tertiary structure of the corresponding poly-
leucine homopolypeptide. More precisely, this is a homopolypeptide whose
side chain excluded volume envelope matches that of leucine but whose
secondary structure preferences were taken from the corresponding native
template structures. Leucine is selected because it gives the same average
pocket volume as the pockets in native sequences for the same backbone
configuration. We note that the average TM-score to the native template is
0.33, which is very close to the average value of the best random structural
alignment of 0.30. Despite the fact that these proteins have similar sec-
ondary structural preferences and native structures, in general, they are
globally unrelated to the native structure from which these preferences are
excised. For each homopolypeptide, the top centroid of the most populated
structural cluster is selected.

To estimate the stability of a given sequence in the given ART structure, we
use a knowledge-based potential having a centrosymmetric amino acid burial
term (39) and secondary structure preferences generated using a neural
network and a statistical pair potential (40). Sequences were also generated
without the pair potential; these results are indicated by no-pr. For a given
polyleucine structure, a randomized sequence is generated based on the
average amino acid composition in the PDB. The sequence is shuffled to give
a low-energy structure for the ART structural template of interest (3). Then,
the corresponding all-atom conformation is built from the Cα trace by
Pulchra (41). For each polyleucine template, 20 randomly related sequences
are generated (mean sequence identity of ∼7%). This procedure gen-
erates a total of 25,180 structures and constitutes the ART template library.
CAVITATOR was applied to identify all pockets in the resulting structures.
Using PDB structures as the target, ART template pockets that are more than
10 residues in length and have more than 100 grid points in volume are
considered. Then, the best of top 10 pockets with the highest PS-score to

the corresponding native pocket are selected. When comparing ART target
pockets to themselves, we consider all ART target pockets whose volume is
more than 100 grid points and whose lengths are more than 10 and fewer
than or equal to 60 residues. This gives a total of 11,094 ART target pockets
and 96,090 ART template pockets.

Representative Pockets. We seek to find the smallest set of representative
pockets that are sufficient to cover the full set of pockets at a desired level of
similarity. In terms of graph theory, pocket similarity relationships can be
viewed as a directed graph G, wherein each node represents a pocket, and
an edge from pocket A to the pocket B indicates that A as a pocket structural
template provides significant similarity to target pocket B above a specified
PS-score threshold. Thus, the size N of the sought-after representative set
is the domination number for G, which is defined as the cardinality of the
smallest dominating set of the graph (42). An approximation to the domi-
nation number of the set of protein pockets is constructed as follows
(42): For a given template library, the pocket with the largest number of
matching targets at the specified PS-score is selected. Then, the pocket
with the next highest number of matching targets (after all matching
targets to the first pocket are removed) is calculated. The process is
iterated until all target pockets that can be matched to a template pocket
at the specified score threshold are selected. The resulting number of dis-
tinct pockets is reported. The fraction of matching pockets is the ratio of
the number of pockets assigned to the dominating set divided by the total
number of pockets.
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