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To begin to elucidate the principles of intermolecular dynamics in
the crowded environment of cells, employing Brownian dynamics
(BD) simulations, we examined possible mechanism(s) responsible
for the great reduction in diffusion constants of macromolecules in
vivo from that at infinite dilution. In an Escherichia coli cytoplasm
model comprised of 15 different macromolecule types at physiolo-
gical concentrations, BD simulations of molecular-shaped and
equivalent sphere representations were performed with a soft
repulsive potential. At cellular concentrations, the calculated diffu-
sion constant of GFP is much larger than experiment, with no
significant shape dependence. Next, using the equivalent sphere
system, hydrodynamic interactions (HI) were considered. Without
adjustable parameters, the in vivo experimental GFP diffusion con-
stant was reproduced. Finally, the effects of nonspecific attractive
interactions were examined. The reduction in diffusivity is very
sensitive to macromolecular radius with the motion of the largest
macromolecules dramatically slowed down; this is not seen if HI
dominate. In addition, long-lived clusters involving the largest
macromolecules form if attractions dominate, whereas HI give rise
to significant, size independent intermolecular dynamic correla-
tions. These qualitative differences provide a testable means of
differentiating the importance of HI vs. nonspecific attractive inter-
actions on macromolecular motion in cells.

Brownian dynamics ∣ correlated motion

One of the most characteristic features of the interiors of cells
is the high total concentration of biological macromolecules.

Typically, 20%–40% of the cytoplasmic volume is occupied by
proteins, nucleic acids, and other macromolecules (1–3). Under
these conditions, although the molar concentration of each pro-
tein ranges from nM to μM, the distance between neighboring
proteins is comparable to the size of the proteins. Therefore,
simulating the crowded intracellular environment is crucial to
understanding the nature of living systems.

Macromolecular crowding exerts surprisingly large effects on
the thermodynamics and kinetics of processes such as macromo-
lecular association, protein stability, and enzyme activity (1, 4, 5).
The diffusion and partitioning of macromolecules are highly re-
stricted by intermolecular steric repulsions as well as nonspecific
attractive interactions. Consequently, the in vivo and in vitro rates
and equilibria of biological reactions can differ by orders of
magnitude. While there have been several models of metabolic
networks or signaling pathways designed to elucidate the relation-
ship between molecular and cellular behavior (6), effects of
macromolecular crowding are at best only partially considered (7).

Diffusion is one of the most important physical parameters
that describe motions of molecules in a fluid. The diffusion
constants of macromolecules in the cytoplasm as well as in mem-
branes have been measured by various techniques including
“single-particle tracking” (8), “fluorescence recovery after photo-
bleaching (FRAP)” (9), and “fluorescence correlation spectro-
scopy” (10). All experiments show that the in vivo diffusion of
proteins is greatly reduced compared to dilute conditions. Re-
cently, Elowitz et al. (11) and Konopka et al. (12) applied FRAP
to measure the diffusion coefficient of GFP in the Escherichia coli
(E. coli) cytoplasm. Both groups reported that the diffusion coef-

ficient of GFP in vivo is about 10 times less than that at infinite
dilution in water. What is responsible for this reduction? To date,
there have only been a few reports on the simulation of crowded,
cytosol-like systems to analyze macromolecule motion. The first
study was reported by Bicount and Field (13), where the cyto-
plasm was modeled as a mixture of three different types of
spheres representing ribosomes, average proteins, and tRNAs,
and Langevin dynamics simulations were performed using the
DLVO (Derjaguin, Landau, Verwey, and Overbeek) potential.
Ridgway et al. (14) and Roberts et al. (15) also modeled twelve
different kinds of macromolecules as repulsive spheres and per-
formed dynamic simulations. Although excluded volume effects
significantly affected molecular motions, these interactions could
not account for the factor of ∼10 reduction in GFP’s diffusion
constant. Recently, McGuffee and Elcock performed Brownian
dynamics (BD) simulations using atomically detailed macromo-
lecule models with electrostatic potentials (16). Despite inclusion
of electrostatics, McGuffee and Elcock had to adjust the strength
of the van der Waals interactions to reproduce GFP’s in vivo
diffusion constant (16). We note that the strength of attractive
interactions can be tuned to set the magnitude of the diffusion
constant anywhere from the dilute solution value to zero. There-
fore, the mechanisms responsible for the large slow down of
diffusion remain uncertain.

In this study, as a necessary first step towards whole cell mod-
eling, we performed BD simulations of the E. coli cytoplasm to
address the following issues in crowded, heterogeneous environ-
ments: (i) the effect of macromolecular shape on diffusion, (ii)
the importance of hydrodynamic interactions (HI) on diffusion,
and (iii) the differences in dynamic behavior when HI or attrac-
tive interactions dominate. To date, the effect of macromolecular
shape has been ignored; rather, the single sphere per molecule
model was used in simulations of crowded systems (13, 14, 17).
While intermolecular HI play an important role in determining
the dynamics of concentrated particles (18, 19), it has been ne-
glected in the most simulations of biological macromolecules due
to its long-range nature and high computational cost. Finally, how
to differentiate the slow down in dynamics due to HI from that
due to nonspecific attractive interactions has not been addressed.

The importance of HI on the dynamics of colloidal suspensions
has been well studied using computational methods such as
Stokesian dynamics (18), lattice-Boltzmann approaches (20),
multiparticle collision dynamics (21), and dissipative particle
dynamics (22). Stokesian dynamics, despite its computational
cost, is advantageous because it is straightforward to compare
simulations with and without HI, a lattice grid is unnecessary,
and it reproduces the dynamic properties of homogeneous,
monodisperse colloidal suspensions even at a volume fraction
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of ∼0.5. Here, we apply Stokesian dynamics to simulate the diffu-
sion of a polydisperse collection of macromolecules in crowded,
heterogeneous intracellular three-dimensional environments.

Results
Estimation of Diffusion Tensor of a Macromolecule from Atomic Struc-
ture. To estimate diffusion tensors of macromolecules from their
atomic structures, the rigid-particle formalism was used (23–25).
As described in Methods, proteins are represented by their Cα
beads, with a bead radius of 6.1 Å (the only optimized parameter)
giving the best fit to the experimental translational and rotational
diffusion coefficients of macromolecules at infinite dilution (see
Table S1 and Fig. S1). For example, the method provides a trans-
lational diffusion coefficient for GFP of 8.9 Å2∕ns at 293 K, in
excellent agreement with experiment, 8.7 Å2∕ns (26). To simulate
the inside of cells, we also include nucleic acids. Using the same
bead radius as proteins, the calculated translational diffusion
coefficient of tRNA is 7.6 Å2∕ns at 293 K, consistent with the
experimental value of 7.8 Å2∕ns (27).

Effect of Macromolecular Shape on Diffusion. What is the effect of
explicit macromolecular shape on diffusion in crowded environ-
ments? Demonstration of a minor shape effect would enable HI
to be calculated in a computationally tractable manner. We per-
formed BD simulations with only steric repulsions for systems
that consider either the explicit shape or the equivalent Stokes
sphere radius. To compare the diffusivity of macromolecules in
the two molecular representations as well as with experiment,
we focus on translational diffusion. Rotational diffusion is also
likely to play an important role in intracellular dynamics. We will
analyze rotational diffusion in future work. Hereafter, “diffusion”
refers to translational diffusion.

The E. coli protocell in the two different representations
is shown in Fig. 1 (see also Fig. S2). As an example, at a total
concentration of 300 mg∕mL, Fig. S3 shows the energies, mean
square displacements (MSD), and diffusion coefficients for sev-
eral macromolecules as a function of time. From the point of view
of energy, the systems equilibrate quickly (Fig. S3 A and B). As in
other simulation studies on cytosol-like systems, crossover from
anomalous to normal diffusion is observed for all molecules at
short times <1 μs (Fig. S3 C–F) (14–16). Subsequently, a linear
relationship between time and MSD is observed, with rapid
convergence of the respective diffusion constants.

Trajectories of the explicit molecular-shaped and equivalent
sphere systems are shown in Movie S1. In Fig. 2, the ratio of
the long-time translational diffusion coefficients, DL, observed
in the virtual cytoplasm system to that estimated in dilute solu-
tion, D0, as a function of Stokes radius is shown. Qualitatively
consistent with other simulations (14–16) and experimental re-
sults on eukaryotic cells (2), for both systems, at three different
concentrations, DL∕D0 decreases with increasing molecular

radius. The results of explicit molecular-shaped and equivalent
sphere systems are very close over the entire range of radii for
concentrations of 250 and 300 mg∕mL. At 350 mg∕mL, the
long-time diffusion constants of the sphere system are slightly less
than in the molecular-shaped system. These results suggest that at
a macromolecular concentration of 300 mg∕mL or less, effects of
macromolecular shape on molecular diffusion in crowded envir-
onments are small and that the equivalent sphere per macromo-
lecule model is a reasonable approximation for the analysis of in
vivo diffusion.

In in vivo experiments,DL∕D0 of GFP is 0.06–0.09 (11, 12) (see
Fig. 2). On the other hand,DL∕D0 values of GFP in the simulated
equivalent sphere system at 250 mg∕mL and 300 mg∕mL are
0.46 and 0.31, this is more than three times larger than experi-
ment. Even for the molecular-shaped system at 350 mg∕mL,
the simulated diffusion constant of GFP is still two times larger
than experiment. These results indicate that (consistent with
other studies (14–16)), although excluded volume effects reduce
macromolecular diffusion in intracellular environments, they
cannot explain the factor of ∼10–16 reduction observed in vivo.

Effect of Hydrodynamic Interactions on Diffusion. Next, we per-
formed BD simulations with HI using equivalent sphere systems
to evaluate the effects of HI on diffusion in crowded environ-
ments. In addition to the Rotne-Prager-Yamakawa (28, 29) inter-
action tensor, (widely used in biomolecular simulations to
incorporate the long-range effects of HI), we also account for
the lubrication forces that play a crucial role in the short-range
interactions that are especially important in dense systems (18,
30). BecauseHI calculations are computationally expensive (com-
putational costs with and without HI are roughly OðN3Þ and
OðNÞ, respectively, with N the number of particles), we consid-
ered somewhat smaller systems containing ∼400macromolecules
compared to the sphere system with just repulsive interactions
(Table 1); without HI, the calculated diffusion constants are insen-
sitive to whether the larger or smaller system is considered.

A representative trajectory is shown in Movie S1. Fig. S4A,
where the normalized short-time diffusion coefficients, DS∕D0,
of GFP, GAPDH, and the ribosome (small, medium, and large
macromolecules) at 300 mg∕mL as a function of simulation time
up to 15 μs are shown. It is clear that all macromolecules have
reached their long-time limit. TheMSD and diffusion coefficients
of GFP, GAPDH, and the ribosome as a function of simulation
time are shown in Fig. S4 B, C. As also seen in simulations with-
out HI, crossover from anomalous to normal diffusion is observed
at short times (<1 μs). MSD values after 5 μs were used to es-
timate the long-time diffusion coefficients of all macromolecules.

Fig. 1. Molecular-shaped (left) and sphere (right) systems at 300 mg∕mL.
Macromolecules are represented in different colors. Figures were generated
by VMD (56).

Fig. 2. Long-time diffusion constant ratio as a function of macromolecule
radius in the sphere (open symbols) and molecular-shaped systems (filled
symbols) with steric repulsion. Squares, circles, and triangles are at 250,
300, and 350 mg∕mL, respectively. The reductions in diffusion constant of
GFP measured in vivo of DH5α (11), BL21(DE3) (12), and K-12 E. coli (12)
are shown by plus, cross, and asterisk, respectively. Dashed line is GFP’s radius.
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Fig. 3 shows DS∕D0 and DL∕D0 values at three different con-
centrations as a function of Stokes radius. DL∕D0 obtained from
the BD simulations of sphere systems with just steric repulsions
are also shown. Similar to the simulations without HI, DS∕D0 and
DL∕D0 decrease with increasing radius. For DS, HI greatly
reduces the diffusion constants of all particles; in contrast, DS

is always equal to D0 when HI are ignored; the reduction in
short-time diffusion coefficient is a purely hydrodynamic prop-
erty; DS equals D0 when HI are absent (31).

Interestingly, as shown in Fig 3B, BD simulations with HI for
GFP in the 300 mg∕mL system (a reasonable estimate of the
macromolecular concentration in E. coli) gives DL∕D0 of 0.08,
in good agreement with the observed experimental values of
0.09 in DH5α (11), 0.07 in BL21(DE3) (12), and 0.06 in the
K-12 strain (12) grown in a rich medium (Fig. 3B). These results
indicate that steric crowding and HI are two major factors
responsible for the reduction in diffusion of macromolecules
in intracellular environments. Indeed, without any other assump-
tions, these two effects quantitatively reproduce the experimen-
tally observed diffusion constant of GFP in vivo.

Effect of Nonspecific Attractive Interactions on Diffusion. Because
nonspecific, attractive interactions are another plausible cause
of the large reduction of in vivo diffusivity (4), we next examined
their effects. We consider each macromolecule to be a sphere
having a rough surface, which is filled with small van der Waals
(vdW) particles with a 3 Å diameter (see SI Text: Eqs. 40–42, with
ϵLJ of 0.37 kcal∕mol). Because the 300 mg∕mL system equili-
brated slowly from the point of view of energy due to the slow
relaxation of interacting clusters (Fig. S5), simulations were
performed up to 50 μs, and the first 30 μs were ignored in the
calculation of diffusion constants.

As shown in Fig. 4, in this model,DL is very strongly dependent
on macromolecular radius compared to the HI model. This same
qualitative behavior is seen if the explicit molecular shape system
with a Lennard-Jones potential is used or if we consider the rough
sphere system with electrostatic interactions (see SI Text: Eq. 43
and Fig. S6); thus, the results are quite robust and invariant to the
specific form of the potential. We would expect that if nonspecific
attractive interactions dominate in vivo diffusion, the strength of
this reduction would be very sensitive to molecular radius,
whereas if HI dominate, the reduction in mobility is far less sen-
sitive. Moreover, DL for molecules whose radii exceed GFP have
greatly reduced mobility and are almost immobile due to the for-
mation of long-lived clusters (see Movie S1). Because there is a
dramatic qualitative difference in predicted behavior, which
mechanism dominates could be determined experimentally.

Large-Distance and Long-Time Intermolecular Correlations. Finally,
the dynamical correlations in space and time between macromo-
lecules were examined. Such effects are expected to be present
when HI are included. To analyze the correlation between parti-
cles, we calculated a normalized pair correlation function, Cij
(see SI Text: Eq. 47). Cij ranges from −1 to 1. When two particles
are positively correlated, Cij > 0, and when they are negatively
correlated, Cij < 0.

Representative Cij of large and small particle pairs up to 100 ns
in time and 10 Å in space for the sphere system with and without
HI as well as with the nonspecific attractive interaction model are
shown in Fig. 5. In the model without HI, where DL ∼ 3 times
larger than in the HI model, (Fig 5 top) Cij < 0.1 even at short
times (<30 ns) for both pairs. In contrast, for both pairs of mo-
lecules, a significant positive intermolecular dynamic correlation
for the simulation with HI is evident, though these are on average
weak, Cij < 0.3. Due to short-range attractive interactions in the
nonspecific binding model, for large molecules a positive correla-
tion is seen for short distances (<5 Å), but this correlation
rapidly decays in space but not time. This same qualitative beha-
vior is seen when electrostatic interactions are allowed between
all macromolecular pairs with the notable exception of ribosome-
ribosome and ribosome-GroEL/ES pairs. For these molecules,
due to their large negative charges, dynamical correlations are
weak over the entire range of time and space.

Table 1. Properties of simulated systems

250 mg∕mL 300 mg∕mL 350 mg∕mL

Box size ð100 nmÞ3 ð75 nmÞ3 ð100 nmÞ3 ð71 nmÞ3 ð100 nmÞ3 ð67 nmÞ3
Total number of molecules 1,000 423 1,152 412 1,295 390
Volume fraction in molecular-shaped system* 0.38 0.38 0.45 0.44 0.52 0.52
Volume fraction in sphere system 0.43 0.43 0.51 0.50 0.59 0.60

*Volumes of molecules were calculated using a bead radius of 6.1 Å.

Fig. 3. Reduction in diffusivity as a function of radius for the system with HI
at three different concentrations. Triangles and circles represent DS∕D0 and
DL∕D0, respectively. Open (filled) symbols are values in the sphere model with
repulsive (HI) interactions. Plus, cross, and asterisk symbols are as in Fig. 2.
Dashed line is GFP’s radius.

Fig. 4. At 300 mg∕mL, long-time diffusion constant ratio, DL∕D0, as a
function of radius in the nonspecific, van der Waals interaction (HI) model
is represented by squares (filled circles). Dashed line is GFP’s radius.
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When nonspecific attractive interactions dominate, consistent
with the very small values of DL, long-lived clusters at small in-
termolecular distances involving large macromolecules are seen.
These results suggest that the dynamics in systems with HI and
with nonspecific attractive interactions are qualitatively different.
When HI are included, quite long distance and time dynamical
correlations between particles of all sizes are observed but tight
clusters of large particles are absent.

Discussion
The goal of this study is to evaluate the role of molecular shape,
HI, and nonspecific attractive interactions in the reduction of
macromolecular diffusion in intracellular environments. To ascer-
tain the importance of shape details where only soft repulsions
are allowed, we considered two molecular representations: a
molecular-shaped system and an equivalent sphere per macromo-
lecule. An important result is that the equivalent sphere per
macromolecule model well describes the diffusion of macromo-
lecules in intracellular environments. We next examined whether
HI exert a significant effect on macromolecular dynamics. For
the heterogeneous, crowded environment typical of cells, these
BD simulations take into account not only far-field HI but also
near-field lubrication effects in three dimensions. The key finding
of this work is that the two factors, excluded volume effects and
HI, are sufficient to explain the large reduction in diffusion of
macromolecules observed in vivo. Indeed, the diffusion constant
of GFP in vivo can be quantitatively predicted by the inclusion of
HI without any adjustable parameters or other ad hoc assumptions.

Nonspecific attractive interactions (e.g., vdWor contact poten-
tials) represent another plausible mechanism that could cause
the large reduction of diffusivity in vivo. However, by tuning
the magnitude of intermolecular attractive interactions, we can
scale the diffusion constant between the infinite dilution value
and zero. How can one experimentally differentiate if nonspeci-
fic, attractive interactions or HI dominate macromolecular diffu-
sion? One of the biggest differences between vdWand HI is their
interaction range: HI are long-range interactions which decay
∼1∕r, while vdW are short-range interactions that decay rapidly
as 1∕r6 on the atomic scale (although their cumulative effects act
at long-range with a large sensitivity to particle size). The other
big difference is in the direction of the forces: vdW is always
attractive between two particles except when particles overlap,

while the hydrodynamic force is repulsive for particles approach-
ing each other and attractive for particles moving apart. Thus,
the following qualitative differences in dynamic behavior result:
First, the short-time diffusion constant, DS, is the same as the
infinite dilution, D0, value when attractive interactions dominate,
whereas if HI dominate, DS should differ significantly from D0,
with a difference that is size dependent. Second, for nonspecific
attractions, the reduction in long-time diffusion constant should
be strongly size dependent, with long-lived clusters forming with
larger macromolecules that dramatically reduces their diffusion
constant. If HI dominate, DL should exhibit a much weaker
dependence on particle radius. Third, if HI are important, signif-
icant correlations in intermolecular dynamics for all size macro-
molecules should be observed in both space and time. These
correlated motions are entirely absent in purely repulsive systems
that ignore HI. With attractions, long-lived short distance corre-
lations resulting from long-lived cluster formation should be seen
for the larger macromolecules; this acts to dramatically reduce
the diffusion constant of large molecules. We suspect that this
large reduction in diffusivity is a nonphysical effect, and possibly
precludes nonspecific intermolecular interactions as exerting a
dominant effect on the dynamics.

A number of other factors can also affect intracellular diffu-
sion: (i) Electrostatic interactions between molecules. In principle,
electrostatic interactions are long-ranged. However, the salt con-
centration inside cells is ∼150 mM, so that they are well screened
with a Debye length of ∼8 Å. McGuffee and Elcock recently si-
mulated a bacterial cytoplasm model where electrostatic interac-
tions were treated by using Poisson-Boltzmann equations (16).
However, the diffusion coefficient of GFP is just slightly smaller
than that obtained without electrostatic interactions; both values
were 3–4 times larger than experiment. Moreover as shown in
SI Text, inclusion of electrostatic interactions at the level of a lin-
earized Poisson-Boltzmann equation using a single charge per
one molecule does not modify the qualitative conclusions. Het-
erogeneous charge distributions on molecular surface, like in real
biomolecules, may affect macromolecular motions. However, be-
cause electrostatic interactions are highly screened due to the
short Debye length found in physiological conditions, we believe
that our conclusions would not qualitatively change. (ii) Viscosity
of the cytoplasm. In our simulations, the viscosity of the cytoplasm
equals the value in water. The in vivo cytoplasm viscosity has been

Fig. 5. Normalized pair correlation function, Cij , averaged over GFP-GFP (left) and RNA polymerase-RNA polymerase (right) pairs for three different
simulation models at 300 mg∕mL. The Stokes radii of GFP and RNA polymerase are 24.0 and 66.5 Å, respectively.
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measured and is not significantly larger than bulk water, i.e., it is
less than 2 centipoise (2, 14, 32). (iii) GFP dimerization. It is well
known that GFP tends to dimerize in solutions of low
(<100 mM) ionic strength (33). All of these physical factors will
decrease macromolecular diffusivity in vivo. However, based on
other work (16) and our results, which show that the reduction in
diffusion of GFP in the simulation with HI is very close to experi-
ment, we expect the contribution of these three factors to
be small.

Our results have demonstrated the likely importance of HI in
macromolecular diffusion in vivo. However, there are a few pos-
sible limitations: First, the properties of a fluid on the nanometer
scale are different from the bulk (34–36). HI determined by
solving Stokes equations may not fully describe the molecular si-
tuation. (But the ability of Stokesian dynamics to describe the
diffusive behavior of macromolecular colloid solutions suggests
that such discrepancies in practice are minor). In order to fully
validate the continuum limit assumption, molecular dynamics
simulations with explicit solvent models would be necessary. Sec-
ond, HI were considered only for the equivalent sphere system
where the detailed molecular shape is ignored. Without HI,
we demonstrated that this representation is a very good approx-
imation, but we have not explicitly shown this for the system with
HI. Recently, an analytical formula that estimates the crossover
time from anisotropic to isotropic diffusion of an arbitrarily
shaped object in three dimensions using its 6N × 6N diffusion
tensor matrix was introduced (37). The longest crossover time
of molecule in our simulation system estimated by using this
formula is 1.7 μs for ribosome. Therefore, the effect of shape
and diffusion anisotropy on the analysis of long-time translational
diffusion is expected to be small. Third, our method is computa-
tionally very expensive. For much longer and larger simulations,
further improvements in computational efficiency are essential.
Banchio and Brady introduced a unique idea into BD simulations
with HI to reduce the computational cost from OðN3Þ to
OðN1.25 lnNÞ, where a mean field approximation for far-field
HI and a Chebyshev polynomial instead of Cholesky decomposi-
tion are applied (38). Using or developing an approximate
method such as local-density dependent HI (39, 40), is another
possibility. However, the aforementioned methods were devel-
oped for homogeneous colloidal suspensions. Therefore, to de-
velop a new method for heterogeneous cellular systems, a series
of simulations based purely on hydrodynamic theory, like this
study, must be performed. These simulations can serve as the
reference system to assess approximate methods.

Diffusion in concentrated colloidal dispersions is well studied
experimentally as well as theoretically. For monodisperse, hard
sphere spherical particles, analytical equations that describe
the concentration dependence of the short-time and long-time
self-diffusion coefficients have been derived by Tokuyama and
Oppenheim (41, 42). These theoretical values are in good agree-
ment with experimental results on diffusivity even for condensed
systems. Average values of short-time and long-time diffusion
coefficients obtained from our simulations at three different con-
centrations decrease with increasing volume fraction, which are
qualitatively similar to Tokuyama and Oppenheim’s theoretical
analysis. However, the short-time diffusion coefficients are smal-
ler and the long-time diffusion coefficients are larger than the
theoretical values with deviation less than 0.1. These small devia-
tions may reflect differences between the monodisperse systems
assumed by the theory and the heterogeneous systems under con-
sideration. Additionally, crowding effects on the macromolecular
motions are usually analyzed in the presence of a single type of
crowding agent. A recent simulation study showed that the helix-
coil transition temperature of a flexible helical homopolymer
depends on the size of the crowding particles even at an identical
volume fraction (43). This dependence may imply that the hetero-
geneity of the environment is important for understanding crowd-

ing effects in vivo. From the point of this view, our simulation
method would be a good tool to analyze the in vivo thermody-
namics and kinetics of macromolecular dynamics.

In conclusion, genome-sequencing has provided a detailed
“parts list” for life (44). Recently, the proteome wide prediction
of protein structure and function has also become practical
(44–50). The next frontier in biophysics is to integrate this infor-
mation and construct in silico cells that not only can describe the
behavior of living systems in terms of individual biomolecules
but which also can elucidate new biological principles describing
their collective behavior. Until now, little attention has been paid
to the biophysical properties of the crowded, heterogeneous
environments found in cells, which have a great impact on the
biological processes taking place. Therefore, modeling these
crowding effects is an important first step towards whole cell
simulation.

In that spirit, by conducting a series of BD simulations, the
following conclusions were obtained: First, excluded volume
effects and HI are likely the two major factors that likely account
for the large reduction of diffusion of macromolecules in vivo.
Second, representing a molecule by one sphere is a reasonable
approximation for analyzing in vivo macromolecular diffusion.
Third, the effects of HI can be experimentally demonstrated
by examining the reduction in short-time and long-time diffusion
constants over the infinite dilution values, and by exploring the
presence of intermolecular dynamic correlations at times scales
on the hundreds of nanoseconds. If validated, this experimental
result will provide insight into the hitherto unsuspected impor-
tance of HI on intracellular dynamics.

Methods
The detailed description of the methodology employed here is described in
SI Text with the salient points presented below.

Estimation of Diffusion Tensor of a Macromolecule from Its Atomic Structure.
Proteins and nucleic acids are represented by their Cα and P, C4′, N1, and
N9 beads, respectively. To account for the shape anisotropy of macromole-
cules, their infinite dilution diffusion tensors were calculated using rigid-
particle theory (23–25). In this theory, the radius of the beads is the only para-
meter needed as input. The bead radius was optimized using twelve different
proteins whose molecular mass ranges from 6 kDa to 230 kDa, (24) (Table S1
and Fig. S1) to reproduce their diffusion constants in dilute conditions.

Construction of the Intracellular Environment. We built systems mimicking the
E. coli cytoplasm environment based on the data reported by Ridgway et al
(14) and the CyberCell database of the physical properties of E. coli (51). The
concentration of macromolecules in the E. coli cytoplasm is estimated to be in
the range of 300–400 mg∕mL (3). Therefore, intracellular models at three
different concentrations, 250, 300, and 350 mg∕mL were constructed that
contain 15 different types of macromolecules abundant in the E. coli cyto-
plasm (52). These macromolecules include ribosomes, chaperonin GroEL/
ES, RNA polymerase, glycolytic and some other enzymes, tRNA, and GFP
(Fig. S2). For molecular-shaped systems (see Fig 1, left), molecules were repre-
sented by strings of beads described in the previous section. The number and
types of macromolecules are summarized in Table 1 and Table S3, with their
estimated hydrodynamic properties presented in Table S2.

To investigate the effects of molecular shape on diffusion, we constructed
a system (see Fig 1, right) where each macromolecule i was represented by an
equivalent sphere Stokes radius ai , is given by 6πηai ¼ kBT∕D0;i, in which D0;i

is the calculated translational diffusion coefficient of molecule i (see Table S2)
at infinite dilution.

Hydrodynamic Interactions. In order to include not only the far-field HI but
also the many-body and near-field HI in simulations, the Durlofsky-Brady-
Bossis approach to Stokesian dynamics was used (18, 53).

Brownian Dynamics Algorithm. For a BD simulation without HI, the integration
scheme developed by Ermak and McCammon (54) was used. On including HI,
in principle, the diffusion tensor of each molecule depends on the instanta-
neous configuration of the entire system (but we would expect screening to
emerge at higher concentrations). To explore the role of HI, the modified
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midpoint BD algorithm introduced by Banchio and Brady (38), and based on
Fixman’s idea (55) was used.

Potential Functions. Repulsive interactions between intermolecular particles
in BD simulations without HI are represented by a soft-sphere, harmonic po-
tential, (see SI Text: Eq. 38). In BD simulations with HI, we do not implement
explicit repulsive forces between particles, because lubrication forces prevent
particle overlap. For the nonspecific binding model, attractive interactions
were described by Lennard-Jones potential function (see also SI Text:
Eqs. 40–42). In this model, the surface roughness of macromolecule was also
considered by including a correction factor. The potential was then optimized
to reproduce the in vivo mobility of GFP.

Simulation Conditions and Analysis. All simulations were performed at 298 K
with periodic boundary conditions. For all systems, ten independent simula-

tions were run, each with different, randomly generated initial configura-
tions. For BD simulations of repulsive and nonspecific, attractive binding
models without HI, 30 and 50 μs simulations were performed with a time step
of 0.5 and 0.1 ps, respectively. For BD simulations with HI, we ran 15 μs simu-
lations with a time step of 2 ps. For simulations with nonspecific binding and
HI, we used a smaller system than that used for the strictly repulsive model.
The first 5, 30, and 5 μs of simulations of repulsive, nonspecific binding mod-
els, and HI models were ignored in our analysis, respectively. To estimate the
long-time diffusion coefficients of all themacromolecules, MSD values after a
time interval of 5 μs were used.
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